Here we have to compare the Bohr atomic model with electron cloud model.
In the Bohr's atomic model the electrons of an element is assumed to be particle in nature. Which was unable to explain the deBroglie' hypothesis or the uncertainty principle and has certain demerits.
The uncertainty principle reveals the wave nature of the electrons or electron clod model. The Bohr condition of a stable orbits of the electron can nicely be explained by the electron cloud model, the mathematical form of which is λ = nh/mv, where, λ = wavelength, n is the integral number, h = Planck's constant, m = mass of the electron and v = velocity of the electron.
The integral number i.e. n is similar to the mathematical form of Bohr's atomic model, which is mvr = nh/2π. (r = radius of the orbit).
Thus, the electron cloud model is an extension of the Bohr atomic model, which can explain the demerits of the Bohr model. Later it is revealed that the electron have both particle and wave nature. Which is only can explain all the features of the electrons around a nucleus of an element.
The answer is -11.2 fahrenheit.
Answer:
the second one I think...
Answer:
44,901 kilo Joule heat is released when
grams of ammonia is produced.
Explanation:
Moles of ammonia gas produced :

According to reaction, when 2 moles of ammonia are produced 9.18 kilo joules of energy is also released.
So, When 978.235 moles of ammonia gas is produced the energy released will be:

(negative sign indicates that energy is released as heat)
44,901 kilo Joule heat is released when
grams of ammonia is produced.