Answer:
A) a = 73.304 rad/s²
B) Δθ = 3665.2 rad
Explanation:
A) From Newton's first equation of motion, we can say that;
a = (ω - ω_o)/t. We are given that the centrifuge spins at a maximum rate of 7000rpm.
Let's convert to rad/s = 7000 × 2π/60 = 733.04 rad/s
Thus change in angular velocity = (ω - ω_o) = 733.04 - 0 = 733.04 rad/s
We are given; t = 10 s
Thus;
a = 733.04/10
a = 73.304 rad/s²
B) From Newton's third equation of motion, we can say that;
ω² = ω_o² + 2aΔθ
Where Δθ is angular displacement
Making Δθ the subject;
Δθ = (ω² - ω_o²)/2a
At this point, ω = 0 rad/s while ω_o = 733.04 rad/s
Thus;
Δθ = (0² - 733.04²)/(2 × 73.304)
Δθ = -537347.6416/146.608
Δθ = - 3665.2 rad
We will take the absolute value.
Thus, Δθ = 3665.2 rad
Velocity - <span><span>the speed of something in a given direction
Speed - </span></span><span>rapidity in moving, going, traveling, proceeding, or performing; swiftness; <span>celerity
Velocity is the speed in a certain direction, whereas speed is just the rate of fastness.
Does that make sense?
</span></span>
The boy’s foot causes the motion. His foot is the one that causes the ball to roll down the hill.
The photocell<span>-- The click rate depends upon the filter selected.</span>
A or possibly C because the other options have nothing to do with the size of the vibration. If i was you I would answer with A