1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Greeley [361]
2 years ago
6

If a 160W light bulb consumes 1000J of electrical energy in a given time, then in the same time interval, how much energy will a

40W light bulb consume?
​
Physics
2 answers:
NNADVOKAT [17]2 years ago
7 0
160w/4 = 40w
1000J/ 4= 250J
a 40w light bulb will consume 250J
kodGreya [7K]2 years ago
7 0

Answer:250J

Explanation:

160*t=1000

40* 1000/160= 250

You might be interested in
What is the energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b?
xeze [42]

The energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b is 3.06 eV.

<h3>Change in energy level of the electron</h3>

When photons jump from a higher energy level to a lower level, they emit or radiate energy.

The change in energy level of the electrons is calculated as follows;

ΔE = Eb - Ef

ΔE = -2.68 eV - (-5.74 eV)

ΔE = 3.06 eV

Thus, the energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b is 3.06 eV.

Learn more about energy level here: brainly.com/question/14287666

#SPJ1

7 0
2 years ago
An electron and a proton each have a thermal kinetic energy of 3kBT/2. Calculate the de Broglie wavelength of each particle at a
S_A_V [24]

Answer:

Given:

Thermal Kinetic Energy of an electron, KE_{t} = \frac{3}{2}k_{b}T

k_{b} = 1.38\times 10^{- 23} J/k = Boltzmann's constant

Temperature, T = 1800 K

Solution:

Now, to calculate the de-Broglie wavelength of the electron, \lambda_{e}:

\lambda_{e} = \frac{h}{p_{e}}

\lambda_{e} = \frac{h}{m_{e}{v_{e}}              (1)

where

h = Planck's constant = 6.626\times 10^{- 34}m^{2}kg/s

p_{e} = momentum of an electron

v_{e} = velocity of an electron

m_{e} = 9.1\times 10_{- 31} kg = mass of electon

Now,

Kinetic energy of an electron = thermal kinetic energy

\frac{1}{2}m_{e}v_{e}^{2} = \frac{3}{2}k_{b}T

}v_{e} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{e}}}

}v_{e} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{9.1\times 10_{- 31}}}

v_{e} = 2.86\times 10^{5} m/s                    (2)

Using eqn (2) in (1):

\lambda_{e} = \frac{6.626\times 10^{- 34}}{9.1\times 10_{- 31}\times 2.86\times 10^{5}} = 2.55 nm

Now, to calculate the de-Broglie wavelength of proton, \lambda_{e}:

\lambda_{p} = \frac{h}{p_{p}}

\lambda_{p} = \frac{h}{m_{p}{v_{p}}                             (3)

where

m_{p} = 1.6726\times 10_{- 27} kg = mass of proton

v_{p} = velocity of an proton

Now,

Kinetic energy of a proton = thermal kinetic energy

\frac{1}{2}m_{p}v_{p}^{2} = \frac{3}{2}k_{b}T

}v_{p} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{p}}}

}v_{p} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{1.6726\times 10_{- 27}}}

v_{p} = 6.674\times 10^{3} m/s                               (4)                    

Using eqn (4) in (3):

\lambda_{p} = \frac{6.626\times 10^{- 34}}{1.6726\times 10_{- 27}\times 6.674\times 10^{3}} = 5.94\times 10^{- 11} m = 0.0594 nm

7 0
3 years ago
Please list them from top to bottom, for exp like in your response, a,g,q,d. Giving quite some points for it.
Aleks04 [339]
D,f,g,h,i,a,e,c,j. I’m sure that it
7 0
2 years ago
Which statement correctly describes mass-energy equivalence? All energy in the universe will be converted to an equivalent amoun
olchik [2.2K]

The statement 'all energy in the universe is a result of mass being converted into energy' correctly describes mass-energy equivalence.

<h3>What is mass-energy equivalence?</h3>

The expression mass-energy equivalence refers to the proportion of matter that can be converted into energy in the universe.

This mass-energy equivalence is an outcome of process of converting mass into energy.

In conclusion, the statement 'all energy in the universe is a result of mass being converted into energy' correctly describes mass-energy equivalence.

Learn more about mass-energy equivalence here:

brainly.com/question/3171044

#SPJ1

4 0
2 years ago
What is the Electromagnetic Spectrum? in your own words
Inessa05 [86]
The electromagnetic spectrum is the system of frequencies that show electromagnetic radiation, respective wavelengths, and photon energies. Some examples of frequencies found on the electromagnetic spectrum are radio waves, microwaves, infrared, optical, ultraviolet, X-rays, and gamma-rays.
5 0
2 years ago
Other questions:
  • When are tides highest
    12·2 answers
  • Will mark as brainliest if correct!!!!!!!!!!!!!!!!!!!!!!!!!
    9·2 answers
  • A speed boat increases its speed uniformly from vi = 20.0 m/s to vf = 30.0 m/s in a distance of 2.00 x 10^2m. (a) Draw a coordin
    8·1 answer
  • propane, the gas used in barbeque grills, is made of carbon and hydrogen. Will the atoms that make up propane form covalent bond
    15·2 answers
  • Constanza is on a commuter train between Richville and Shoptown. The train takes 35 minutes to cover the distance between the tw
    6·1 answer
  • What are five ways to decrease resistance?
    11·1 answer
  • A red car with a mass of 3.0 kg traveling at 8 m/s collided with a blue car with a mass of 2.0 kg, which is at rest. The velocit
    6·1 answer
  • What is the resistance (R) when voltage is 179V and current is 5 Amps?
    11·1 answer
  • A shotgun of mass 3kg fires a bullet of 0.1kg at a velocity of 250m/s. What is the recoil velocity of the gun
    5·1 answer
  • Energy in inductors: you need an inductor that will store 20 j of energy when a 3. 0-a current flows through it. what should be
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!