1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mice21 [21]
3 years ago
12

Compared to 15 mph on a dry road, about how much longer will it take for

Engineering
2 answers:
Marysya12 [62]3 years ago
7 0

Answer:

8 to 10 times

Explanation:

For dry road

u= 15 mph        ( 1 mph = 0.44 m/s)

u= 6.7 m/s

Let take coefficient of friction( μ) of dry road is 0.7

So the de acceleration a = μ g

a= 0.7 x 10  m/s ²                         ( g=10 m/s ²)

a= 7 m/s ²

We know that

v= u - a t

Final speed ,v=0

0 = 6.7 - 7 x t

t= 0.95 s

For snow road

μ = 0.4

de acceleration a = μ g

a = 0.4 x 10 = 4 m/s ²

u= 30 mph= 13.41 m/s

v= u - a t

Final speed ,v=0

0 = 30 - 4 x t'

t'=7.5 s

t'=7.8 t

We can say that it will take 8 to 10 times more time as compare to dry road for stopping the vehicle.

8 to 10 times

fenix001 [56]3 years ago
3 0
I would say 2-3 times but I’m not quite sure
You might be interested in
4. The outer end of a control arm is attached to the steering knuckle through a
arlik [135]
Is attached to the spring
3 0
3 years ago
Read 2 more answers
A tool chest has 650 N weight that acts through the midpoint of the chest. The chest is supported by feet at A and rollers at B.
erica [24]

Answer:

the value of horizontal force P is 170.625 N

the value of horizontal force at P = 227.5 N is that the block moves to right and this motion is due to sliding.

Explanation:

The first diagram attached below shows the free body diagram of the tool chest when it is sliding.

Let start out by calculating the friction force

F_f= \mu N_2

where :

F_f = friction force

\mu = coefficient of friction

N_2 = normal friction

Given that:

\mu = 0.3

F_f = 0.3 N_2

Using the equation of equilibrium along horizontal direction.

\sum f_x = 0

P - F_f = 0

P = 0.3 N_2   ----- Equation (1)

To determine the moment about point B ; we have the expression

\sum M_B  = 0

0 = N_2*70-W*35-P*100

where;

P = horizontal force

N_2 = normal force at support A

W = self- weight of tool chest

Replacing W = 650 N

0 = N_2*70-650*35-100*P

P = \frac{70 N_2-22750}{100} ----- equation (2)

Replacing  \frac{70 N_2-22750}{100}  for P in equation (1)

\frac{70N_2 -22750}{100} =0.3 N_2

N_2 = \frac{22750}{40}N_2 = 568.75 \ N

Plugging the value of N_2 = 568.75 \ N in equation (2)

P = \frac{70(568.75)-22750}{100} \\ \\ P = \frac{39812.5-22750}{100}  \\ \\ P = \frac{17062.5}{100}

P =170.625 N

Thus; the value of horizontal force P is 170.625 N

b)  From the second diagram attached the free body diagram; the free body diagram of the tool chest when it is tipping about point A is also shown below:

Taking the moments about point A:

\sum M_A = 0

-(P × 100)+ (W×35) = 0

P = \frac{W*35}{100}

Replacing 650 N  for W

P = \frac{650*35}{100}

P = 227.5 N

Thus; the value of horizontal force P, when the tool chest tipping about point A is 227.5 N

We conclude that the motion will be impending for the lowest value when P = 170.625 N and when P= 227.5 N

However; the value of horizontal force at P = 227.5 N is that the block moves to right and this motion is due to sliding.

5 0
3 years ago
A pump operating at steady state receives liquid water at 20°C, 100 kPa with a mass flow rate of 53 kg/min. The pressure of the
VARVARA [1.3K]

Answer:

Input Power = 6.341 KW

Explanation:

First, we need to calculate enthalpy of the water at inlet and exit state.

At inlet, water is at 20° C and 100 KPa. Under these conditions from saturated water table:

Since the water is in compresses liquid state and the data is not available in compressed liquid chart. Therefore, we use approximation:

h₁ = hf at 20° C = 83.915 KJ/kg

s₁ = sf at 20° C = 0.2965 KJ/kg.k

At the exit state,

P₂ = 5 M Pa

s₂ = s₁ = 0.2965 K J / kg.k    (Isentropic Process)

Since Sg at 5 M Pa is greater than s₂. Therefore, water is in compresses liquid state. Therefore, from compressed liquid property table:

h₂ = 88.94 KJ/kg

Now, the total work done by the pump can be calculated as:

Pump Work = W = (Mass Flow Rate)(h₂ - h₁)

W = (53 kg/min)(1 min/60 sec)(88.94 KJ/kg - 83.915 KJ/kg)

W = 4.438 KW

The efficiency of pump is given as:

efficiency = η = Pump Work/Input Power

Input Power = W/η

Input Power = 4.438 KW/0.7

<u>Input Power = 6.341 KW</u>

5 0
3 years ago
Consider a cylindrical nickel wire 2.1 mm in diameter and 3.2 × 104 mm long. Calculate its elongation when a load of 280 N is ap
pshichka [43]

Answer:

Total elongation will be 0.012 m

Explanation:

We have given diameter of the cylinder = 2.1 mm

Length of wire L=3.2\times 10^4mm

So radius r=\frac{d}{2}=\frac{2.1}{2}=1.05mm=1.05\times 10^{-3}m

Load F = 280 N

Elastic modulus = 207 Gpa

Area of cross section A=\pi r^2=3.14\times (1.05\times 10^{-3})^2=3.461\times 10^{-6}m^2

We know that elongation in wire is given by \delta =\frac{FL}{AE}, here F is load, L is length, A is area and E is elastic modulus

So \delta =\frac{FL}{AE}=\frac{280\times 32}{3.461\times 10^{-6}\times 207\times 10^9}=0.012m

4 0
3 years ago
g A part made from annealed AISI 1018 steel undergoes a 20 percent cold-work operation. (a) Obtain the yield strength and ultima
nikdorinn [45]

Answer:

A) - Yield strength before operation = 32 kpsi

- Ultimate Strength before operation = 49.5 kpsi

- Yield strength after operation = 61.854 kpsi

- Ultimate Strength after operation = 61.875 kpsi

- Percentage increase of yield strength = 93.29%

- Percentage increase of ultimate strength = 25%

B) ratio before operation = 1.55

Ratio after operation = 1

Explanation:

From online values of the properties of this material, we have;

Yield strength; S_y = 32 kpsi

Ultimate Strength; S_u = 49.5 kpsi

Modulus; m = 0.25

Percentage of cold work; W_c = 0.2

S_o = 90 kpsi

A) Let's calculate the strain(ε) from the formula;

A_o/A = 1/(1 - W_c)

A_o/A = 1/(1 - 0.2)

A_o/A = 1.25

Thus, strain is;

ε = In(A_o/A)

ε = In(1.25)

ε = 0.2231

Yield strength after the cold work operation is;

S'_y = S_o(ε)^(m)

Plugging in the relevant values;

S'_y = 90(0.2231)^(0.25)

S'_y = 61.854 kpsi

Percentage increase of yield strength = S'_y/(S'_y - S_u) × 100% = (61.854 - 32)/32 × 100% = 93.29%

Ultimate strength after the cold work operation is;

S'_u = S_u/(1 - W_c)

S'_u = 49.5/(1 - 0.2)

S'u = 61.875 kpsi

Percentage increase of ultimate strength = S'_u/(S'_u - S_u) × 100% = (61.875 - 49.5)/49.5 × 100% = 25%

B) Ratio of ultimate strength and yield strength before cold work operations is;

S_u/S_y = 49.5/32

S_u/S_y = 1.547

Ratio of ultimate strength and yield strength after cold work operations is;

S'_u/S'_y = 61.875/61.854 = 1

The ratio after the operation is less than before the operation, thus the ductility reduced.

6 0
3 years ago
Other questions:
  • Write a program that removes all spaces from the given input. You may assume that the input string will not exceed 50 characters
    9·2 answers
  • The domain of discourse is the members of a chess club. The predicate B(x, y) means that person x has beaten person y at some po
    14·1 answer
  • How do scientists and engineers use math to help them?
    14·1 answer
  • a vehicle is in her repair with a complaint at for heating output during testing and diagnosing air is found to be trapped in th
    15·1 answer
  • Water at 15°C is to be discharged from a reservoir at a rate of 18 L/s using two horizontal cast iron pipes connected in series
    6·1 answer
  • The tolerance for a geometric can be easily identified by reading the _________.
    13·2 answers
  • A certain printer requires that all of the following conditions be satisfied before it will send a HIGH to la microprocessor ack
    12·1 answer
  • Users say that the game is interesting to look at but the music gets annoying
    9·1 answer
  • Shane's 100-watt radio draws 7 amps of current on a 120-volt circuit. What is the resistance in the radio?
    8·1 answer
  • What is resonance as in ultrasound waves formation using magnetostriction method​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!