Answer:
this lesson is the third in a three-part series about the nucleus, isotopes, and radioactive decay. The first lesson, Isotopes of Pennies, deals with isotopes and atomic mass. The second lesson, Radioactive Decay: A Sweet Simulation of Half-life, introduces the idea of half-life.
By the end of the 8th grade, students should know that all matter is made up of atoms, which are far too small to see directly through a microscope. They should also understand that the atoms of any element are alike but are different from atoms of other elements. Atoms may stick together in well-defined molecules or they could be packed together in large arrays.
For students, understanding the general architecture of the atom and the roles played by the main constituents of the atom in determining the properties of materials now becomes relevant. Having learned earlier that all the atoms of an element are identical and are different from those of all other elements, students now come up against the idea that, on the contrary, atoms of the same element can differ in important ways. (Benchmarks for Science Literacy, p. 79.)
In this lesson, students will be asked to consider the case of when Frosty the Snowman met his demise (began to melt). The exercise they will go through of working backwards from measurements to age should help them understand how scientists use carbon dating to try to determine the age of fossils and other materials. To be able to do this lesson and understand the idea of half-life, students should understand ratios and the multiplication of fractions, and be somewhat comfortable with probability
Explanation:
It’s 1 or 3 sorry if this is wrong
The elements are listed in order of increasing the atomic number. Its the number that is the number of protons in the nucleus of an atom.
Answer:
The transfer was essential to understand the mutation and the possibility of new, more resistant strains in microorganisms.
Explanation:
the transfer of microorganisms is based on the transfer of genetic data through conductive pathways that penetrate the membranes, called pili or genetic bridges.
These mutated genes with higher resistance are transmitted and resistance is generated in entire populations and even species.