Answer:
The rock's final speed at the required altitude will be 42.24 m/s.
Explanation:
Let's start by finding the initial vertical speed.
Vertical Speed = 1.61 * Sin (53.2°)
Vertical Speed = 0.8 m/s
We want to know the speed of the rock when it is at an altitude of 91 km.
The total displacement of the rock from its starting position will thus be equal to -91 km
We can use this in the following equation:


t = 4.3918 seconds
Thus it takes 4.3918 seconds to reach the required altitude. We can now find the speed as follows:



Thus the rock's final speed at the required altitude will be 42.24 m/s.
Answer:
208
Explanation:
add it together for the answer
Explanation:
<u>Formula:</u>

<u>d = distance given</u>
<u>t</u><u> </u><u>=</u><u> </u><u>the amount of time </u><u>given</u>
<u>Substitute the given values into the formula for velocity</u><u>:</u>

velocity is shortened for v.
8 (distance) divided by 4 (time) equals the velocity.
<u>Solve:</u>

The velocity of the toy car equals: B. 2 m/s.
Answer:
hope it helps
Explanation:
Newtons third law is that objects exert equal and opposite forces on each other.
'every action has an equal and opposite reaction'.