1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Valentin [98]
2 years ago
15

3730 watts equals about how many horsepowerA.5B.10C.20D.30

Physics
2 answers:
ikadub [295]2 years ago
4 0
<span><span>3,730 W is equal to about 5 horsepower. (4.9982 hp)</span></span>
Katyanochek1 [597]2 years ago
3 0
3730 watts equals about 5 horsepower.

Since 1 horsepower = 746 watts, 3730 watts would equals to about 5 horsepower (3730/746 = 5).
You might be interested in
A lady bug is sitting on the bottom of a can while you twirl it overhead on a string that is 65.0
MA_775_DIABLO [31]

The linear speed of the ladybug is 4.1 m/s

Explanation:

First of all, we need to find the angular speed of the lady bug. This is given by:

\omega=\frac{2\pi}{T}

where

T is the period of revolution

The period of revolution is the time taken by the ladybug to complete one revolution: in this case, since it does 1 revolution every second, the period is 1 second:

T = 1 s

Therefore, the angular speed is

\omega=\frac{2\pi}{1 s}=6.28 rad/s

Now we can find the linear speed of the ladybug, which is given by

v=\omega r

where:

\omega=6.28 rad/s is the angular speed

r = 65.0 cm = 0.65 m is the distance of the ladybug from the axis of rotation

Substituting, we find

v=(6.28)(0.65)=4.1 m/s

Learn more about angular speed:

brainly.com/question/9575487

brainly.com/question/9329700

brainly.com/question/2506028

#LearnwithBrainly

7 0
3 years ago
If the distance between two objects decreased, what would happen to the force of gravity between them?
evablogger [386]

Answer: A- It would increase

Explanation:

According to the law of universal gravitation:

F=G\frac{m_{1}m_{2}}{r^2}  

Where:  

F is the module of the attraction force exerted between both objects

G is the universal gravitation constant.  

m_{1} and m_{2} are the masses of both objects  

r is the distance between both objects

As we can see, the gravity force is directly proportional to the mass of the bodies or objects and inversely proportional to the square of the distance that separates them.

In other words:

<h2>If we decrease the distance between both objects, the gravitational force between them will increase.  </h2>
6 0
3 years ago
Read 2 more answers
A skater with a mass of 72 kg is traveling east at 5.8 m/s when he collides with another skater of mass 45 kg heading 60° south
Akimi4 [234]

The final velocity is 5.87 m/s

<u>Explanation:</u>

Given-

mass, m_{1} = 72 kg

speed, v_{1} = 5.8 m/s

Mass_{2},m_{2}  = 45 kg

speed_{2},v_{2}  = 12 m/s

Θ = 60°

Final velocity, v = ?

Applying the conservation of momentum:

m_{1} X v_{1} + m_{2} X v_{2} = (m_{1} +m_{2} ) v

72 X 5.8 + 45 X 12 X cos 60° = (72 + 45) v

v = 417.6 + 540 X \frac{0.5}{117}

v = 417.6 + \frac{270}{117}

v = 5.87 m/s

The final velocity is 5.87 m/s

8 0
3 years ago
9. A 5.0 kg block on an inclined plane is acted upon by a horizontal force of 100 N shown in the figure below. The coefficient o
Helga [31]

Answer:

A: The acceleration is 7.7 m/s up the inclined plane.

B: It will take the block 0.36 seconds to move 0.5 meters up along the inclined plane

Explanation:

Let us work with variables and set

m=5kg\\\\F_H=100N\\\\\mu=0.3\\\\\theta=37^o.

As shown in the attached free body diagram, we choose our coordinates such that the x-axis is parallel to the inclined plane and the y-axis is perpendicular. We do this because it greatly simplifies our calculations.

Part A:

From the free body diagram we see that the total force along the x-axis is:

F_{tot}=mg*sin(\theta)+F_s-F_Hcos(\theta).

Now the force of friction is F_s=\mu*N, where N is the normal force and from the diagram it is F_y=mg*cos(\theta).

Thus F_s=\mu*N=\mu*mg*cos(\theta).

Therefore,

F_{tot}=mg*sin(\theta)+\mu*mg*cos(\theta)-F_Hcos(\theta)\\\\=mg(sin(\theta)+\mu*cos(\theta))-F_Hcos(\theta).

Substituting the value for F_H,m,\mu, and \:\theta we get:

F_{tot}= -38.63N.

Now acceleration is simply

a=\frac{F_H}{m} =\frac{-38.63N}{5kg} =-7.7m/s.

The negative sign indicates that the acceleration is directed up the incline.

Part B:

d=\frac{1}{2} at^2

Which can be rearranged to solve for t:

t=\sqrt{\frac{2d}{a} }

Substitute the value of d=0.50m and a=7.7m/s and we get:

t=0.36s.

which is our answer.

Notice that in using the formula to calculate time we used the positive value of a, because for this formula absolute value is needed.

5 0
3 years ago
The fundamental frequency of a standing wave on a 1.0-m-long string is 440 Hz. What would be the wave speed of a pulse moving al
Nana76 [90]

Answer: v = 880m/s

Explanation: The length of a string is related to the wavelength of sound passing through the string at the fundamental frequency is given as

L = λ/2 where L = length of string and λ = wavelength.

But L = 1m

1 = λ/2

λ = 2m.

But the frequency at fundamental is 440Hz and

V = fλ

Hence

v = 440 * 2

v = 880m/s

4 0
3 years ago
Other questions:
  • What is the momentum of a 5 kg object that has a velocity of 1.2 m/s?
    12·2 answers
  • Is magnetic a form of energy
    15·1 answer
  • Which of the following best defines boiling point?
    9·1 answer
  • A string is attached to a ball that has a mass of 0.11 kg. A student pulls up on the string so that the ball accelerates upward
    10·1 answer
  • What is the atomic number of a sodium atom that has 11 protons and 12 neutrons
    6·1 answer
  • Electric Cars A 12 volt car battery has a capacity of 100 ampere-hours, supplying 2 A of current for 50 hours. How much ENERGY d
    12·1 answer
  • 8. A solid wooden door, 90 cm wide by 2.0 m tall, has a mass of 35 kg. It is open and at rest. A small 500-g ball is thrown perp
    6·1 answer
  • A constant force of 5KN pulls a crate along a distance of 15 m in 75s.What is the power​
    6·1 answer
  • PLZZ I WILL DO ANY THING
    13·1 answer
  • A frog leaps with a displacement equal to vector u and then leaps with a displacement equal to vector v, as
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!