1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Digiron [165]
3 years ago
10

A person who weighs 150 pounds on Earth would weigh ____ pounds on the moon.

Physics
1 answer:
enot [183]3 years ago
6 0

Answer:

25lb

Explanation:

You haven't changed (you are made up of the same atoms), but the force exerted on you is different. Physicists like to say that your mass hasn't changed, only your weight.

You might be interested in
What would be the orbital speed and period of a satellite in orbit 0.82 ✕ 108 m above the earth?
Ivenika [448]
The answer should be 88.56
3 0
3 years ago
A merry-go-round with a rotational inertia of 600 kg m2 and a radius of 3. 0 m is initially at rest. A 20 kg boy approaches the
Margaret [11]

Hi there!

\boxed{\omega = 0.38 rad/sec}

We can use the conservation of angular momentum to solve.

\large\boxed{L_i = L_f}

Recall the equation for angular momentum:

L = I\omega

We can begin by writing out the scenario as a conservation of angular momentum:

I_m\omega_m + I_b\omega_b = \omega_f(I_m + I_b)

I_m = moment of inertia of the merry-go-round (kgm²)

\omega_m = angular velocity of merry go round (rad/sec)

\omega_f = final angular velocity of COMBINED objects (rad/sec)

I_b = moment of inertia of boy (kgm²)

\omega_b= angular velocity of the boy (rad/sec)

The only value not explicitly given is the moment of inertia of the boy.

Since he stands along the edge of the merry go round:

I = MR^2

We are given that he jumps on the merry-go-round at a speed of 5 m/s. Use the following relation:

\omega = \frac{v}{r}

L_b = MR^2(\frac{v}{R}) = MRv

Plug in the given values:

L_b = (20)(3)(5) = 300 kgm^2/s

Now, we must solve for the boy's moment of inertia:

I = MR^2\\I = 20(3^2) = 180 kgm^2

Use the above equation for conservation of momentum:

600(0) + 300 = \omega_f(180 + 600)\\\\300 = 780\omega_f\\\\\omega = \boxed{0.38 rad/sec}

8 0
3 years ago
The distance between earth and sun is 15000000km. Light takes 499 seconds to reach earth from sun. Calculate the speed of light
iVinArrow [24]

To solve the problem we must know about the relationship between Speed, distance, and Time.

<h3>What is the relationship between Speed, distance, and Time?</h3>

We know that sped, distance, and time all are in a relationship to each other. this relationship can be given as,

\rm{Speed = \dfrac{Distance}{Time}

The speed of the light is 30,060.12 km/sec.

Given to us

  • The distance between the earth and the sun is 15000000km
  • Light takes 499 seconds to reach earth from the sun.

We know that speed can be described as,

\rm{Speed = \dfrac{Distance}{Time}

Therefore,

<h3>What is the speed of the light?</h3>

\text{Speed of light} = \dfrac{\text{Distance between the earth and the sun}}{\text{Time taken by the light to travel the distance}}

Substitute the value,

\text{Speed of light} = \dfrac{15,000,000\ km}{499\ seconds}

\text{Speed of light} = 30,060.12\ km/sec

Hence, the speed of the light is  30,060.12 km/sec.

Learn more about Speed, distance, and Time:

brainly.com/question/15100898

7 0
2 years ago
Read 2 more answers
You are removing branches from your roof after a big storm. You throw a branch horizontally from your roof, which is a height 3.
mart [117]

Answer:

The initial velocity in the x-direction with which the branch was thrown is approximately 10.224 m/s

Explanation:

The given parameters of the motion of the branch are;

The height from which the branch is thrown = 3.00 m

The horizontal distance the branch lands from where it was thrown, x = 8.00 m

The direction in which the branch is thrown = Horizontally

Therefore, the initial vertical velocity of the branch, u_y = 0 m/s

The time it takes an object in free fall (zero initial downward vertical velocity) to reach the ground is given as follows;

s = u_y·t + 1/2·g·t²

Where;

u_y = 0 m/s

s = The initial height of the object = 3.00 m

g = The acceleration due to gravity = 9.8 m/s²

∴ s = 0·t + 1/2·g·t² = 0 × t + 1/2·g·t² = 1/2·g·t²

t = √(2·s/g) = √(2 × 3/9.8) = (√30)/7 ≈ 0.78246

The horizontal distance covered before the branch touches the ground, x = 8.00 m

Therefore, the initial velocity in the horizontal, x-direction with which the branch was thrown, 'uₓ', is given as follows;

uₓ = x/t = 8.00 m/((√30)/7 s)

Using a graphing calculator, we get;

uₓ = 8.00 m/((√30)/7 s) = (28/15)·√30 m/s ≈ 10.224 m/s

The initial velocity in the horizontal, x-direction with which the branch was thrown, uₓ ≈ 10.224 m/s.

3 0
3 years ago
A 40-W lightbulb is 1.7 m from a screen. What is the intensity of light incident on the screen? Assume that a lightbulb emits ra
Sonja [21]

Answer:

Intensity, I=1.101\ W/m^2

Explanation:

Power of the light bulb, P  = 40 W

Distance from screen, r = 1.7 m

Let I is the intensity of light incident on the screen. The power acting per unit area is called the intensity of the light. Its formula is given by :

I=\dfrac{P}{A}

I=\dfrac{P}{4\pi r^2}

I=\dfrac{40\ W}{4\pi (1.7\ m)^2}

I=1.101\ W/m^2

So, the intensity of light is 1.101\ W/m^2.

6 0
3 years ago
Other questions:
  • By what factor does the drag force on a car increase as it goes from 65 to 110 km/h?
    8·2 answers
  • An object is in simple harmonic motion. Find an equation for the motion given that the frequency is 3⁄π and at time t = 0, y = 0
    15·2 answers
  • A material that provides resistance to the flow of electric current is called a(an)
    13·2 answers
  • What type of crime is committed when a hacker steals someones's bank accounts information
    8·2 answers
  • The captain told the passengers that the plane is flying at 450 miles per hour this information describes the plane
    6·2 answers
  • A fully loaded, slow-moving freight elevator has a cab with a total mass of 1200 kg, which is required to travel upward 54 m in
    7·1 answer
  • The impulse of a constant force is equal to
    14·1 answer
  • What happens to light when it is shone through concave lenses? (1 point)
    13·2 answers
  • What type of circuit is pictured?<br> O Parallel Circuit<br> Series Circuit
    13·2 answers
  • Velocity vectors point in the same direction as displacement?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!