The answer is C the temp of water in both beakers will decrease since the metal is flowing heat into the water. Therefore we can say the metal losses heat and the water gains the heat lost by the metal minus any heat loss to surroundings! Hope this explanation helps you understand the concept! Please rate if I helped you! Thank you so much!
Answer:
Explanation:
When a body is held against a vertical wall , to keep them in balanced position , normal force is applied on their surface . this force creates normal reaction which acts against the normal force and it is equal to the normal force as per newton's third law . Ultimately friction force is created which is proportional to normal force and it acts in vertically upward direction . It prevents the body from falling down .
Hence normal force = reaction force .
From second law also net force is zero , so if normal force is N and reaction force is R
R - N = mass x acceleration = mass x 0 = 0
R = N .
Ranking normal force from highest to smallest
150 N , 130 N , 120 N
B )
Frictional force is equal to the weight of the body because the body is held at rest .
Ranking of frictional force form largest to smallest
7 kg , 5 kg , 3 kg , 1 kg .
Here frictional force is irrespective of the normal force acting on the body because frictional force adjusts itself so that it becomes equal to weight in all cases here because it always balances the weight of the body .
Flu,because it has the capacity of better fight influenza and it has no bad side effects and it can be taken easily as nasal spray or in the arm.
Speed of any freely falling object is always same. Provided, both are left to fall from the same height. If you perform this experiment in a perfect vacuum or near vacuum laboratory, both of them will reach ground with same velocity this is because there is no resistance to their motion. This is always true no matter where you go and perform this experiment.
It can be easily proved from conservation of mechanical energy. Why conserving energy? because there are no forces acting on the freely falling objects other than conservative force(mg).