Answer:
Using the given values
F = K q^2 / r^2 = 9 * 10E9 * (1.6 * E-19)^2 / (5.18 * E-15)^2 N
E = 9 * 1.6^2 / 5.18^2 * 10 = 8.5 N
Answer:
Δ v = 125 m/s
Explanation:
given,
mass of space craft = 435 Kg
thrust = 0.09 N
time = 1 week
= 7 x 24 x 60 x 60 s
change in speed of craft = ?
Assuming no external force is exerted on the space craft
now,



a = 2.068 x 10⁻⁴ m/s²
using equation of motion
Δ v = a t
Δ v = 2.068 x 10⁻⁴ x 7 x 24 x 60 x 60
Δ v = 125 m/s
Given: Mass of earth Me = 5.98 x 10²⁴ Kg
Radius of earth r = 6.37 x 10⁶ m
G = 6.67 x 10⁻¹¹ N.m²/Kg²
Required: Smallest possible period T = ?
Formula: F = ma; F = GMeMsat/r² Centripetal acceleration ac = V²/r
but V = 2πr/T
equate T from all equation.
F = ma
GMeMsat/r² = Msat4π²/rT²
GMe = 4π²r³/T²
T² = 4π²r³/GMe
T² = 39.48(6.37 x 10⁶ m)³/6.67 x 10⁻¹¹ N.m²/Kg²)(5.98 x 10²⁴ Kg)
T² = 1.02 x 10²² m³/3.99 x 10¹⁴ m³/s²
T² = 25,563,909.77 s²
T = 5,056.08 seconds or around 1.4 Hour