Answer:
c) 2.02 x 10^16 nuclei
Explanation:
The isotope decay of an atom follows the equation:
ln[A] = -kt + ln[A]₀
<em>Where [A] is the amount of the isotope after time t, k is decay constant, [A]₀ is the initial amount of the isotope</em>
[A] = Our incognite
k is constant decay:
k = ln 2 / Half-life
k = ln 2 / 4.96 x 10^3 s
k = 1.40x10⁻⁴s⁻¹
t is time = 1.98 x 10^4 s
[A]₀ = 3.21 x 10^17 nuclei
ln[A] = -1.40x10⁻⁴s⁻¹*1.98 x 10^4 s + ln[3.21 x 10^17 nuclei]
ln[A] = 37.538
[A] = 2.01x10¹⁶ nuclei remain ≈
<h3>c) 2.02 x 10^16 nuclei</h3>
it's def. TRUE. i got the same question and i got it right
Class 1 lever
Explanation:
In a class 1 lever, the fulcrum is placed between the effort and the load. This lever systems is the most common.
- The effort is the force input and the load is the force output
- The fulcrum is a hinge between the load and effort.
- Movement of the effort and load are in opposite directions.
- There are other classes of lever like the class 2 and 3.
- They all have different load, fulcrum and effort configurations
learn more:
Load related problems brainly.com/question/9202964
Torque brainly.com/question/5352966
#learnwithBrainly
Answer:
so angular velocity is 7.13128 sec−1
Explanation:
velocity v = 2.2 m/s
displacement s = 220 mm = 0.220 m
distance d = 510 mm = 0.510 m
to find out
angular velocity
solution
we know that
angular velocity will be velocity ( v) / (displacement² + distance²) .....1
now put all these value in equation 1 and we get angular velocity i.e.
angular velocity = velocity ( v) / (displacement² + distance²)
angular velocity = 2.2 / (0.22² + 0.51²)
angular velocity = 2.2 / 0.3085
angular velocity = 7.13128
so angular velocity is 7.13128 sec−1
Answer:
I beleive it would shoot very far up into the sky
Explanation: