Answer:
a) 1.725*10^5 N
b) 3.83*10^3 N
c) i) 173.24 kN
c) ii) 4.57 kN
Explanation:
See the attachment for calculations
Answer:
Resultant displacement = 1222.3 m
Angle is 88.3 degree from +X axis.
Explanation:
A = 550 m north
B = 500 m north east
C = 450 m north west
Write in the vector form
A = 550 j
B = 500 (cos 45 i + sin 45 j ) = 353.6 i + 353.6 j
C = 450 ( - cos 45 i + sin 45 j ) = - 318.2 i + 318.2 j
Net displacement is given by
R = (353.6 - 318.2) i + (550 + 353.6 + 318.2) j
R = 35.4 i + 1221.8 j
The magnitude is

The direction is given by
Answer:3.67 m/s
Explanation:
mass of block(m)=2 kg
Velocity of block=6 m/s
spring constant(k)=2 KN/m
Spring compression x=15 cm
Conserving Energy
energy lost by block =Gain in potential energy in spring

![2\left [ 6^2-v_2^2\right ]=2\times 10^3\times \left [ 0.15\right ]^2](https://tex.z-dn.net/?f=2%5Cleft%20%5B%206%5E2-v_2%5E2%5Cright%20%5D%3D2%5Ctimes%2010%5E3%5Ctimes%20%5Cleft%20%5B%200.15%5Cright%20%5D%5E2)

Answers are:
(1) KE = 1 kg m^2/s^2
(2) KE = 2 kg m^2/s^2
(3) KE = 3 kg m^2/s^2
(4) KE = 4 kg m^2/s^2
Explanation:
(1) Given mass = 0.125 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.125 * (16)
KE = 1 kg m^2/s^2
(2) Given mass = 0.250 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.250 * (16)
KE = 2 kg m^2/s^2
(3) Given mass = 0.375 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.375 * (16)
KE = 3 kg m^2/s^2
(4) Given mass = 0.500 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.5 * (16)
KE = 4 kg m^2/s^2