Answer:
-0,2 m/s²
Explanation:
Acceleration = α = (V-V₀)/t
α = (10-14)/20 = -0,2 m/s²
Answer:
a. 5 × 10¹⁹ protons b. 2.05 × 10⁷ °C
Explanation:
Here is the complete question
A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is 0.42 A. (a) How many protons strike the target in 19 seconds? (b) Each proton has a kinetic energy of 6.0 x 10-12 J. Suppose the target is a 17-gram block of metal whose specific heat capacity is 860 J/(kg Co), and all the kinetic energy of the protons goes into heating it up. What is the change in temperature of the block at the end of 19 s?
Solution
a.
i = Q/t = ne/t
n = it/e where i = current = 0.42 A, n = number of protons, e = proton charge = 1.602 × 10⁻¹⁹ C and t = time = 19 s
So n = 0.42 A × 19 s/1.602 × 10⁻¹⁹ C
= 4.98 × 10¹⁹ protons
≅ 5 × 10¹⁹ protons
b
The total kinetic energy of the protons = heat change of target
total kinetic energy of the protons = n × kinetic energy per proton
= 5 × 10¹⁹ protons × 6.0 × 10⁻¹² J per proton
= 30 × 10⁷ J
heat change of target = Q = mcΔT ⇒ ΔT = Q/mc where m = mass of block = 17 g = 0.017 kg and c = specific heat capacity = 860 J/(kg °C)
ΔT = Q/mc = 30 × 10⁷ J/0.017 kg × 860 J/(kg °C)
= 30 × 10⁷/14.62
= 2.05 × 10⁷ °C
Answer:
<h2>42.5 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 50 × 0.85
We have the final answer as
<h3>42.5 N</h3>
Hope this helps you
Answer:
Mc = 1920[lb*in]
Explanation:
Para poder solucionar este problema debemos realizar un análisis estático, por tal motivo lo primero es realizar un diagrama de cuerpo libre con las respectivas fuerzas actuando sobre la barra ABC. DE igual manera calcular la geometría de la configuración mostrada.
El diagrama de cuerpo libre se puede ver en la imagen adjunta, con la solución de este problema.
Lo primero es determinar el angulo t, el cual por medio de las propiedades del triangulo rectángulo se puede determinar.
Con este angulo (t) ya determinado, fijamos la atención en el triangulo BCD, este triangulo no es rectángulo, pero por medio de la ley de senos podemos determinar el angulo omega.
Después de determinar el angulo omega, restamos el angulo (t) para poder determinar el angulo (a).
Seguidamente realizamos una sumatoria de momentos alrededor del punto C, utilizado las respectivas fuerzas con los ángulos descompuestos.
El momento en el punto C es de 1920 [Lb*in].
Nota: ya que no se menciona la fuerza en el punto A, esta se desprecia y no se tiene en cuenta en los calculos. En la imagen adjunta se puede ver el procedimiento desarrollado.