Prokaryotes lack an organized nucleus and other membrane<span>-bound organelles. Prokaryotic DNA is found in a central part of the cell called the nucleoid. The cell wall of a prokaryote </span>acts<span> as an extra </span>layer<span> of protection helps maintain </span>cell shape<span>, and prevents dehydration.
</span>
<span>Stainless steel is a metal alloy
that made up mainly of carbon and chromium. In combination
with low carbon contents, chromium is highly reactive element that imparts
remarkable resistance to corrosion and heat.</span>
Moreover, stainless
steel is mixed up with sufficient nickel, which is an essential allying element
in the series of stainless steel grades. Other components are manganese,
molybdenum, silicon, titanium, aluminum, niobium, copper, nitrogen, and sulfur.
Given :
Number of operations move through a pocket calculator during a full day's operation ,
.
To Find :
How many coulombs of charge moved through it .
Solution :
We know , charge in one electron is :

So , charge on n electron is :

Therefore , -21.44 coulombs of charge is moved through it .
Hence , this is the required solution .
A beat is an interference pattern between two sounds of slightly different frequencies, perceived as a periodic variation in volume whose rate is the difference of the two frequencies. Frequency beat is equal to,

The reference frequency in our case would be 392Hz, and since there is the possibility of the upper and lower range for the amount of beats per second that the two possible frequencies are heard would be


Therefore the two possible frequencies the piano wire is vibrating at, would be 396Hz and 388Hz
Answer:
Mechanical advantage = 4
Explanation:
Given the following data;
Distance of effort, de = 8m
Distance of ramp, dr = 2m
To find the mechanical advantage;
Mechanical advantage = de/dr
Substituting into the equation, we have;
Mechanical advantage = 8/2
Mechanical advantage = 4