1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ollegr [7]
3 years ago
7

Tech A says that a cylinder leakage test is performed on a cylinder with low compression to determine the severity of the leak a

nd where it is located. Tech B says that most manufacturers consider up to 50% cylinder leakage acceptable. Who is correct?
Engineering
1 answer:
Karolina [17]3 years ago
4 0
Tech A djjdjdndnndndbdbx
You might be interested in
. Air at 200 C blows over a 50 cm x 75 cm plain carbon steel (AISI 1010) hot plate with a constant surface temperature of 2500 C
MrRissso [65]

Answer:

The inside temperature, T_{in} is approximately 248 °C.

Explanation:

The parameters given are;

Temperature of the air = 20°C

Carbon steel surface temperature 250°C

Area of surface = 50 cm × 75 cm = 0.5 × 0.75 = 0.375 m²

Convection heat transfer coefficient = 25 W/(m²·K)

Heat lost by radiation = 300 W

Assumption,

Air temperature = 20 °C

Hot plate temperature = 250 °C

Thermal conductivity K = 65.2 W/(m·K)

Steady state heat transfer process

One dimensional heat conduction

We have;

Newton's law of cooling;

q = h×A×(T_s - T_{\infty) + Heat loss by radiation

= 25×0.325×(250 - 20) + 300

= 2456.25 W

The rate of energy transfer per second is given by the following relation;

P = \dfrac{K \times A \times \Delta T}{L}

Thermal conductivity K = 65.2 W/(m·K)

Therefore;

2456.25  = \dfrac{65.2 \times 0.375 \times (250 - T_{in})}{0.02}

T_{in} = 250 - \dfrac{2456.25  \times 0.02}{65.2 \times 0.375} = 247.99 ^{\circ}C

The inside temperature, T_{in} = 247.99 °C  ≈ 248 °C.

3 0
4 years ago
Ignoring any losses, estimate how much energy (in units of Btu) is required to raise the temperature of water in a 90-gallon hot
Rudik [331]

Answer:

Q=36444.11 Btu

Explanation:

Given that

Initial temperature = 60° F

Final temperature = 110° F

Specific heat of water = 0.999 Btu/lbm.R

Volume of water = 90 gallon

Mass = Volume x density

1\ gallon = 0.13ft^3

Mass ,m= 90 x 0.13 x 62.36 lbm

m=729.62 lbm

We know that sensible heat given as

Q= m Cp ΔT

Now by putting the values

Q= 729.62 x 0.999 x (110-60) Btu

Q=36444.11 Btu

5 0
3 years ago
Two dogbone specimens of identical geometry but made of two different materials: steel and aluminum are tested under tension at
makkiz [27]

Answer:

\dot L_{steel} = 3.448\times 10^{-4}\,\frac{in}{min}

Explanation:

The Young's module is:

E = \frac{\sigma}{\frac{\Delta L}{L_{o}} }

E = \frac{\sigma\cdot L_{o}}{\dot L \cdot \Delta t}

Let assume that both specimens have the same geometry and load rate. Then:

E_{aluminium} \cdot \dot L_{aluminium} = E_{steel} \cdot \dot L_{steel}

The displacement rate for steel is:

\dot L_{steel} = \frac{E_{aluminium}}{E_{steel}}\cdot \dot L_{aluminium}

\dot L_{steel} = \left(\frac{10000\,ksi}{29000\,ksi}\right)\cdot (0.001\,\frac{in}{min} )

\dot L_{steel} = 3.448\times 10^{-4}\,\frac{in}{min}

7 0
3 years ago
Read 2 more answers
If you need to write a function that will compute the cost of some candy, where each piece costs 25 cents, which would be an app
masya89 [10]
The best answer would be

D. Int calculateCost(int count);
6 0
3 years ago
The time to failure for a gasket follows the Weibull distribution with ß = 2.0 and a characteristic life of 300 days. What is th
Aleks04 [339]

Answer:

64.11% for 200 days.

t=67.74 days for R=95%.

t=97.2 days for R=90%.

Explanation:

Given that

β=2

Characteristics life(scale parameter α)=300 days

We know that Reliability function for Weibull distribution is given as follows

R(t)=e^{-\left(\dfrac{t}{\alpha}\right)^\beta}

Given that t= 200 days

R(200)=e^{-\left(\dfrac{200}{300}\right)^2}

R(200)=0.6411

So the reliability at 200 days 64.11%.

When R=95 %

0.95=e^{-\left(\dfrac{t}{300}\right)^2}

by solving above equation t=67.74 days

When R=90 %

0.90=e^{-\left(\dfrac{t}{300}\right)^2}

by solving above equation t=97.2 days

7 0
3 years ago
Other questions:
  • Water at 15°C is to be discharged from a reservoir at a rate of 18 L/s using two horizontal cast iron pipes connected in series
    7·1 answer
  • Water flows down a rectangular channel that is 1.2 m wide and 1 m deep. The flow rate is 0.95 m/s. Estimate the Froude number of
    15·1 answer
  • Air is compressed in the compressor of a turbojet engine. Air enters the compressor at 270 K and 58 kPa and exits the compressor
    13·1 answer
  • How should employees talk to clients)
    9·1 answer
  • A flywheel performs each of these functions except: A. Contains a gear used for engine starting B. Smoothes engine operation C.
    11·1 answer
  • A power of 100 kW (105 W) is delivered to the other side of a city by a pair of power lines, between which the voltage is 12,000
    9·1 answer
  • A mass of air occupying a volume of 0.15m^3 at 3.5 bar and 150 °C is allowed [13] to expand isentropically to 1.05 bar. Its enth
    11·1 answer
  • There are three options for heating a particular house: a. Gas: $1.33/therm where 1 therm=105,500 kJ b. Electric Resistance: $0.
    9·1 answer
  • A 50-mm cube of the graphite fiber reinforced polymer matrix composite material is subjected to 125-kN uniformly distributed com
    14·1 answer
  • What do you mean by decentralization??​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!