A 3-D model can be communicated, and can also be a visual model.
I think downwards as that's how most saw's work.
Answer:
Hello your question has some missing information below are the missing information
The refrigerant enters the compressor as saturated vapor at 140kPa Determine The coefficient of performance of this heat pump
answer : 2.49
Explanation:
For vapor-compression refrigeration cycle
P1 = P4 ; P1 = 140 kPa
P2( pressure at inlet ) = P3 ( pressure at outlet ) ; P2 = 800 kPa
<u>From pressure table of R 134a refrigerant</u>
h1 ( enthalpy of saturated vapor at 140kPa ) = 239.16 kJ/kg
h2 ( enthalpy of saturated liquid at P2 = 800 kPa and t = 60°C )
= 296.8kJ/kg
h3 ( enthalpy of saturated liquid at P3 = 800 kPa ) = 95.47 kJ/kg
also h4 = 95.47 kJ/kg
To determine the coefficient of performance
Cop = ( h1 - h4 ) / ( h2 - h1 )
∴ Cop = 2.49
Answer:
78 MPa
Explanation:
Given that the critical resolved shear stress for a metal is 39 MPa, the maximum possible yield strength for a single crystal of this metal is twice the critical resolved shear stress for the metal. The maximum yield yield strength for a single crystal of this metal that is pulled in tension (
) is given as:

Answer:
A fluid flowing along a flat plate will stick to it at the point of contact
Explanation:
and this is known as the no-slip condition. ... This is the precise reason why shear stress in a fluid can also be interpreted as the flux of momentum.