Answer:
125 cm³/min
Explanation:
The material rate of removal is usually given by the formula
Material Rate of Removal = Radial Depth of Cut * Axial Depth of Cut * Feed Rate, where
Radial Depth of Cut = 25 mm
Axial depth of cut = 200 mm
Feed rate = 25 mm/min
On multiplying all together, we will then have
MRR = 25 mm * 200 mm * 25 mm/min
MRR = 125000 mm³/min
Or we convert it to cm³/min and have
MRR = 125000 mm³/min ÷ 1000
MRR = 125 cm³/min
Answer:
Titanium Alloy
Explanation:
Length ( L ) = 20 mm
D1 = 20 mm
d2 = 18 mm
l = 20 mm
Mechanical efficiency = 50%
power = 80 kW
cutting rake angle = 0°
cutting speed ( v ) = 10 m/s
<u>Determine the material to be for the cylinder </u>
In order to choose a material for the cylinder we have to calculate the cutting force
P = Fc * V
80 = Fc * 10 m/s
therefore Fc = 80 / 10 = 8 N
Hence the material we can use is Titanium Alloy due to low cutting force value
Answer:
Problem 1 (10 points) In the first homework you were instructed to design the mechanical components of an oscillating compact disc reader. Since you did such a good job in your design, the company decided to work with you in their latest Blue-ray readers, as well. However, this time the task is that once the user hits eject button, the motor that spins the disc slows down from 2000 rpm to 300 rpm and at 300 rpm a passive torsional spring-damper mechanism engages to decelerate and stop the disc. Here, your task is to design this spring-damper system such that the disc comes to rest without any oscillations. The rotational inertia of the disc (J) is 2.5 x 10-5kg m² and the torsional spring constant (k) is 5 × 10¬³NM. Calculate the critical damping coefficient cc for the system. choice of the damper, bear in mind that a good engineer stays at least a factor of In your 2 away from the danger zone (i.e., oscillations in this case). Use the Runge Kutta method to simulate the time dependent angular position of the disc, using the value of damping coefficient (c) that calculated. you Figure 1: Blue-ray disc and torsional spring-damper system.
Short-term goals are planned for the near future while long-term goals will take longer to complete. An example of a short-term goal is trying to get into a certain college. A long-term goal is wanting to have a big family.
Answer:
A single force, which is acting at angle θ from a horizontal axis, can be resolved into components which act along the perpendicular axis.
Consider the perpendicular axis x and y, where x represents the horizontal axis and y represents vertical axis.
The Force is resolved into 2 parts, one acts along x-axis and is represent by X. The other acts along y-axis and is represented by Y.
From the diagram we can see that the Force and its components X and Y makes up a right angles triangle, where θ is the angle from the x-axis
<h3 /><h3>Find X:</h3>
We know that:
cosθ = Base/Hypotenuse
cosθ = X/F
X = Fcosθ
<h3>Find Y:</h3>
We know that:
sinθ = Perpendicular/Hypotenuse
sinθ = Y/F
Y = Fsinθ
<h3>Relation of Force and its Components:</h3>
Force F can be represent by:
F = Fcosθ (along x-axis) + Fsinθ (along y-axis)
As they form a right angled triangle, we can use Pythagoras Theorem to show the relation between Force and its components.
Hypotenuse² = Base² + Perpendicular²
F² = X² + Y²
F² = (Fcosθ)² + (Fsinθ)²

Where θ can be found by using any of the trignometric functions.