1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
3 years ago
14

Two common methods of improving fuel efficiency of a vehicle are to reduce the drag coefficient and the frontal area of the vehi

cle. Consider a car with 1.85 m width and 1.75 m height, with a drag coefficient of 0.30. Determine the amount of fuel and money saved per year as a result of reducing the car height to 1.50 m while keeping its width the same. Assume the car is driven 25,000 km (15,000 miles) a year at an average speed of 100 km/h. Take the density and price of gasoline to be 0.74 kg/L and $1.04/L. Also assume the density of air to be 1.20 kg/m3, the heating value of gasoline to be 44,000 kJ/kg, and the overall efficiency of the car’s drive train to be 30%.
Engineering
1 answer:
qaws [65]3 years ago
4 0

Answer:

\Delta V = 209.151\,L, \Delta C = 217.517\,USD

Explanation:

The drag force is equal to:

F_{D} = C_{D}\cdot \frac{1}{2}\cdot \rho_{air}\cdot v^{2}\cdot A

Where C_{D} is the drag coefficient and A is the frontal area, respectively. The work loss due to drag forces is:

W = F_{D}\cdot \Delta s

The reduction on amount of fuel is associated with the reduction in work loss:

\Delta W = (F_{D,1} - F_{D,2})\cdot \Delta s

Where F_{D,1} and F_{D,2} are the original and the reduced frontal areas, respectively.

\Delta W = C_{D}\cdot \frac{1}{2}\cdot \rho_{air}\cdot v^{2}\cdot (A_{1}-A_{2})\cdot \Delta s

The change is work loss in a year is:

\Delta W = (0.3)\cdot \left(\frac{1}{2}\right)\cdot (1.20\,\frac{kg}{m^{3}})\cdot (27.778\,\frac{m}{s})^{2}\cdot [(1.85\,m)\cdot (1.75\,m) - (1.50\,m)\cdot (1.75\,m)]\cdot (25\times 10^{6}\,m)

\Delta W = 2.043\times 10^{9}\,J

\Delta W = 2.043\times 10^{6}\,kJ

The change in chemical energy from gasoline is:

\Delta E = \frac{\Delta W}{\eta}

\Delta E = \frac{2.043\times 10^{6}\,kJ}{0.3}

\Delta E = 6.81\times 10^{6}\,kJ

The changes in gasoline consumption is:

\Delta m = \frac{\Delta E}{L_{c}}

\Delta m = \frac{6.81\times 10^{6}\,kJ}{44000\,\frac{kJ}{kg} }

\Delta m = 154.772\,kg

\Delta V = \frac{154.772\,kg}{0.74\,\frac{kg}{L} }

\Delta V = 209.151\,L

Lastly, the money saved is:

\Delta C = \left(\frac{154.772\,kg}{0.74\,\frac{kg}{L} }\right)\cdot (1.04\,\frac{USD}{L} )

\Delta C = 217.517\,USD

You might be interested in
A traffic flow has density 61 veh/km when the speed is 59 veh/hr. If a flow has a jam density of 122 veh/km, what is the maximum
antoniya [11.8K]

Since this traffic flow has a jam density of 122 veh/km, the maximum flow is equal to 3,599 veh/hr.

<u>Given the following data:</u>

  • Density = 61 veh/km.
  • Speed = 59 km/hr.
  • Jam density = 122 veh/km.

<h3>How to calculate the maximum flow.</h3>

According to Greenshield Model, maximum flow is given by this formula:

q_{max}=\frac{V_f \times K_i}{4}

<u>Where:</u>

  • V_f is the free flow speed.
  • K_i is the Jam density.

In order to calculate the free flow speed, we would use this formula:

V_f =2 V\\\\V_f =2\times 59\\\\V_f=118\;km/hr

Substituting the parameters into the model, we have:

q_{max}=\frac{118 \times 122}{4}\\\\q_{max}=\frac{14396}{4}

Max flow = 3,599 veh/hr.

Read more on traffic flow here: brainly.com/question/15236911

6 0
2 years ago
The basic barometer can be used to measure the height of a building. If the barometric readings at the top and the bottom of a b
Levart [38]

Answer:

230.51 m

Explanation:

Pb = 695 mmHg

Pt = 675 mmHg

Pb - Pt = 20 mmHg

Calculate dP:

dP = p * g * H = (13600)*(9.81)*(20/1000) = 2668.320 Pa

Calculate Height of building as dP is same for any medium of liquid

dP = p*g*H = 2668.320

H = 2668.32 / (1.18 * 9.81) = 230.51 m

8 0
3 years ago
A well-designed product will increase?​
Colt1911 [192]

Answer:

true

Explanation:

A well designed product will increase in sells and in stock.

8 0
1 year ago
Please help i give brainliest​
Mazyrski [523]

Answer:

A mock-up

Explanation:

It is made of cheap and easy to access parts.

5 0
2 years ago
Rope BCA passes through a pulley at point C and supports a crate at point A. Rope segment CD supports the pulley and is attached
djverab [1.8K]

Answer:

363 pounds 32 degrees

Explanation:

Express your answers numerically in pounds and degrees to three significant figures separated by a comma. slader

6 0
2 years ago
Other questions:
  • Water circulates throughout a house in a hot water heating system. If the water is pumped at a speed of 0.50m/s through a 4.0-cm
    5·1 answer
  • Researchers compared protein intake among three groups of postmenopausal women: (1) women eating a standard American diet (STD),
    14·1 answer
  • What is the heights part of Maine?
    5·1 answer
  • WHEN WAS THE FIRST CAR INVENTED?
    13·2 answers
  • The forming section of a plastics plant puts out a continuous sheet of plastic that is 1.2 m wide and 2 mm thick at a rate of 15
    5·1 answer
  • The following sentence can be categorized as what stage in the Scientific Method: Abraham notices that Saharan desert ants will
    6·1 answer
  • The current through a 10-mH inductor is 10e−t∕2 A. Find the voltage and the power at t = 8 s.
    15·2 answers
  • . An ideal vapor compression refrigeration cycle operates with a condenser pressure of 900 kPa. The temperature at the inlet to
    14·1 answer
  • Find the capacitance reactance of a 0.1 micro frequency capacitor 50Hz and at 200Hz​
    9·1 answer
  • T
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!