Answer:
1. Ammonia
Step-by-step explanation:
Ammonia, NH₃, is a <em>compound</em> of nitrogen and hydrogen.
Thus, it can be broken down by chemical means into the <em>elements</em> nitrogen and hydrogen.
The other options are <em>wrong</em>, because Al, Sb, and Pb are elements. They cannot be broken down chemically into simpler substances.
Answer:
[H]=10^-4 when ph=4 higher
[H]=10^-5 when ph =5 lower
Explanation:
brains
Answer:
10.875L
Explanation:
The problem here is a simple conversion. The conversion is from gal to liters Liter is a SI unit for recording volume as stated in the problem.
Given that:
1 gallon of water = 3.75L
2.90 gallon will be 2.9 x 3.75; 10.875L
Answer:
Hydroxide concentration of the sample is 1.3x10⁻⁶M
Explanation:
The equilibrium constant of water, Kw, is:
H₂O(l) ⇄ H⁺(aq) + OH⁻(aq)
Kw is defined as:
Kw = 1.7x10⁻¹² = [H⁺] [OH⁻]
As the sample is of pure water, both H⁺ and OH⁻ ions have the same concentration because come from the same equilibrium, that is:
[H⁺] = [OH⁻]
We can write the Kw expression:
1.7x10⁻¹² = [OH⁻] [OH⁻]
1.7x10⁻¹² = [OH⁻]²
1.3x10⁻⁶M = [OH⁻]
<h3>Hydroxide concentration of the sample is 1.3x10⁻⁶M</h3>
If you would draw the Lewis structures of these atoms, you would see that A has 2 electron pairs and 2 lone electrons (that can bond). For B you’d see that you only have 1 electron that can form a bond. This means that 1 atom of A (2 lone electrons) can bond with 2 atoms of B. To know the kind of bond you have to know wether or not there will be a ‘donation’ of an electron from one atom to another. This happens when the number of electrons on one atoms is equal to the number of electrons another atom needs to reach the noble gas structure. As you can see, this is not the case here. This means that you get an AB2 structure with covalent character.