speed of tortoise is given as v1 = 0.14 m/s
speed of hare is given as v2 = 20*0.14 = 2.8 m/s
now let say the total length of the path is "d"
so the total time taken by the tortoise to cover this

now given that hare took rest for 1 min
so total time of run for hare is (t - 60)s
so the distance that hare covered is given by

now by above two equations



and the time t is given by


so part a)
t = 63 s
part b)
d = 8.82 m
The equation for potential energy is denoted as;
Pe = mgh,
where m = the mass, g = acceleration due to gravity, and h = vertical height of the apple. We are given the units for everything but height, which is also what we are solving for. We can then algebraically rearrange our initial equation to solve for h;
h = (Pe)/(mg)
Plug in your given units, and solve!
Post-check:
h = Pe/mg
h = 175J/(0.36g)(-9.81m/s^2)
h = appr. 49.5 meters
Note: Potential energy is a vector quantity; the displacement of the apple will be a negative number, but the distance itself, a scalar quantity, will be the absolute value of that.
Velocity is the same as the formula for speed, the only difference is
velocity has direction. Velocity is distance over time. Given is 4,400
kilometers travelled west in 4 hours. Applying the given equation, we wil have
4,400/4 = 1,100 km/hr west
A) initial volume
We can calculate the initial volume of the gas by using the ideal gas law:

where

is the initial pressure of the gas

is the initial volume of the gas

is the number of moles

is the gas constant

is the initial temperature of the gas
By re-arranging this equation, we can find

:

2) Now the gas cools down to a temperature of

while the pressure is kept constant:

, so we can use again the ideal gas law to find the new volume of the gas

3) In a process at constant pressure, the work done by the gas is equal to the product between the pressure and the difference of volume:

by using the data we found at point 1) and 2), we find

where the negative sign means the work is done by the surrounding on the gas.
Yeah!! It's possible for an object by changing it's direction....