Answer:
2940.1 joules would you burn in climbing stairs all day.
Explanation:
Work = W = F
d
going up stairs would be against force of gravity
W = mgh
where h is the height
the question is not complete because we need speed or distance
h = v
t
so assuming 1 step per second
h = 86,400 steps
7inchs/step
0.0254 m/inch
h = 15362 m
so from this
W = 800 N
15362
= 12289600 J
that means YOU need 12289600 J to walk 1 step per second all day
divide that by 4180 J /Kcal
Kcal = 
= 
= 2940.1 Kcal
if you ran faster you would use more energy 2 steps per second would mean 5880 Kcal.
The answer is Anguer...
<em>Hope </em><em>it </em><em>helps.</em><em>.</em><em>.</em><em> </em><em>pls </em><em>mark</em><em> brainliest</em>
The weight of an object is taken to be the force on the object due to gravity. The weight ( W ) is the product of the mass ( m ) of the object and the magnitude of the gravitational acceleration ( g ).
On Earth: g = 9.81 m/s²
m = 20 kg
W = m · g = 20 kg · 9.81 m/s² = 196.2 N
Answer:

Explanation:
The electrostatic potential energy for pair of charge is given by
U=1/4π∈₀×(q₁q₂/r)
Hence for a system of three charges the electrostatic potential energy can be found by adding up the potential energy for all possible pairs or charges.For three equal charges on the corners of an equilateral triangle,the electrostatic potential energy is given by:
U=1/4π∈₀×(q²/r)+1/4π∈₀×(q²/r)+1/4π∈₀×(q²/r)
U=3×1/4π∈₀×(q²/r)
Substitute given values
So
Answer:
- When an object experiences acceleration to the left, the net force acting on this object will also be to the left.
- If the mass of the object was doubled, it would experience an acceleration of half the magnitude
Explanation:
When an object experiences acceleration to the left, the net force acting on this object will also be to the left.
From Newton's second law of motion, the acceleration of the object is given as;
a = ∑F / m
a = -F / m
The negative value of "a" indicates acceleration to the left
where;
∑F is the net force on the object
m is the mass of the object
At a constant force, F = ma ⇒ m₁a₁ = m₂a₂
If the mass of the object was doubled, m₂ = 2m₁
a₂ = (m₁a₁) / (m₂)
a₂ = (m₁a₁) / (2m₁)
a₂ = ¹/₂(a₁)
Therefore, the following can be deduced from the acceleration of this object;
- When an object experiences acceleration to the left, the net force acting on this object will also be to the left.
- If the mass of the object was doubled, it would experience an acceleration of half the magnitude