The answer is : We’ll see the bell move, but we won’t hear it ring. This is because light can travel through vacuum but sound cannot. Sound waves are vibrations of particles in any media, so sound requires a medium to travel, and it cannot travel in a vacuum as there is no particles to vibrate.
The net force is the total force. Add 4 and 2 together and you get 6. Since 5 N are pushing against it, you subtract that from 6. The net force is 1 N.
Answer:
250
Explanation:
impulse calculator internet
Answer:
a) K = 3 MeV b) K= 1.5 MeV
Explanation:
We can solve this experiment using the equation of the magnetic force with Newton's second law, where the acceleration is centripetal.
F = q v x B
We can also write this equation based on the modules of the vectors
F = qv B sin θ
With Newton's second law
F = ma
F = m v² / r
q v B = m v² / r
v = q B r / m
The kinetic energy is
K = ½ m v²
Substituting
K = ½ m (q B r/ m)²
K = ½ B² r² q² / m
K = (½ B² R²) q²/m
The amount in brackets does not change during the experiment
K = A q² / m
For the proton
K = 3.0 10⁶eV (1.6 10⁻¹⁹ J / 1eV) = 4.8 10⁻¹³ J
With this data we can find the amount we call A
A = K m/q²
A = 4.8 10⁻¹³ 1.67 10⁻²⁷ /(1.6 10⁻¹⁹)²
A = 3.13 10⁻²
With this value we can write the equation
K = 3.13 10⁻² q² / m
Alpha particle
m = 4 uma = 4 1.66 10⁻²⁷ kg
K = 3.13 10⁻² (2 1.6 10⁻¹⁹)² / 4.0 1.66 10⁻²⁷
K = 4.82 10⁻¹³ J ((1 eV / 1.6 10⁻¹⁹ J) = 3 10⁶ eV
K = 3 MeV
Deuteron
K = 3.13 10⁻² (1.6 10⁻¹⁹)²/2 1.66 10⁻²⁷
K = 2.4 10⁻¹³ J (1eV / 1.6 10⁻¹⁹J)
K = 1.5 10⁶ eV
K= 1.5 MeV