Answer:
The change in momentum of the ball is 24 kg-m/s
Explanation:
It is given that,
Mass of the ball, m = 1 kg
Initial velocity of the ball, u = -12 m/s (in downwards)
Final velocity of the ball, v = +12 m/s (in upward)
We need to find the change in momentum of the ball.
Initial momentum of the ball, 
Final momentum of the ball, 
Change in momentum of the ball, 

So, the change in momentum of the ball is 24 kg-m/s. Hence, this is the required solution.
Answer:
Total pressure in atmosphere IS 4.36 atm
Explanation:
Given Data:
Depth of lake is 400 mtr
surface tension is 147 kilopascals
surface temperature 94 kelvin
Gravity = 1.35 m/s^2
specific gravity of methane(liquid) = 0.415
specific gravity of ethane(liquid) = 0.546
density of methane can be obtained as

Density of ethane can be obtained as

Total pressure in atmosphere can be obtained as


= 441.84 kPa

= 4.36 atm
Answer:
He is gaining kinetic energy and losing potential energy
Explanation:
The horizontal speed of the object 1.0 seconds later is 1) 5.0 m/s.
Explanation:
The motion of an object thrown horizontally off a cliff is a projectile motion, which follows a parabolic path that consists of two independent motions:
- A uniform motion (constant velocity) along the horizontal direction
- An accelerated motion with constant acceleration (acceleration of gravity) in the vertical direction
This means that the horizontal speed of an object in projectile motion does not change, and remains constant during the whole motion.
Since in this case the object has been launched with a horizontal speed of
v = 5.0 m/s
this means that this speed will remain constant during the motion, so its horizontal speed 1.0 s later is also 5.0 m/s.
Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly
Answer:
Red photons have the least amount of energy
Explanation:
The relationship between the photon energy and the color of light is given by:

where
E is the energy
h is the Planck constant
c is the speed of light
is the wavelength (which determines the color of light)
As we see from the equation, energy and wavelength are inversely proportional: this means that the longer the wavelength, the lower the energy, and viceversa.
Among the colors in the visible light spectrum, red is the color with longest wavelength (620-750 nm) and violet is the color with shortest wavelength (380-450 nm). This means that red photons have the least amount of energy, while violet photons have the greatest amount of energy.
So the correct choice is
Red photons have the least amount of energy