Answer:
The value is 
Explanation:
From the question we are told that
The mass of the object is 
The unstressed length of the string is 
The length of the spring when it is at equilibrium is 
The initial speed (maximum speed)of the spring when given a downward blow 
Generally the maximum speed of the spring is mathematically represented as

Here A is maximum height above the floor (i.e the maximum amplitude)
and
is the angular frequency which is mathematically represented as

So

=> 
Gnerally the length of the compression(Here an assumption that the spring was compressed to the ground by the hammer is made) by the hammer is mathematically represented as

=> 
=> 
Generally at equilibrium position the net force acting on the spring is

=> 
=> 
So

=> 
Answer: The person will still have a mass of 90kg on Mars
Explanation: The Truth is, the mass of a body remains constant from place to place. It is the weight which is equal to {mass of body * acceleration due to gravity{g}} that varies from place to place since it is dependent on {g}.
In this case the person will have a Weight of 90*9.8 = 882N on Earth.
{ "g" on Earth is 9.8m/s²}
And a Weight of 90*3.3 = 297N on Mars.
{ From the question "g" on Mars is {9.8m/s²}/3 which is 3.3m/s²}
From this analysis you notice that the WEIGHT of the person Varies but the MASS remained Constant at 90kg.
This is true. Gravity is constantly pulling on anything and everything (even light!), no matter how far away it is from another object.
A: A resource that will always be there, can be replenished by the biogeochemical cycles. B: Can regenerate if they are alive or can be replenished by biochemical cycles if they are non living.
<h2>Answer: in a gaseous state
</h2>
The average kinetic energy of the water molecules is greater in its gaseous state (in the form of water steam).
This is because in the gaseous state the water molecules are well separated from each other and can move freely in all the available space they have; because there are no cohesion forces that bond them.
In contrast to the liquid and solid state, in which the molecules have less movement.