Let both the balls have the same mass equals to m.
Let
and
be the speed of the ball1 and the ball2 respectively, such that

Assuming that both the balls are at the same level with respect to the ground, so let h be the height from the ground.
The total energy of ball1= Kinetic energy of ball1 + Potential energy of ball1. The Kinetic energy of any object moving with speed,
, is 
and the potential energy is due to the change in height is
[where
is the acceleration due to gravity]
So, the total energy of ball1,

and the total energy of ball1,
.
Here, the potential energy for both the balls are the same, but the kinetic energy of the ball1 is higher the ball2 as the ball1 have the higher speed, refer equation (i)
So, 
Now, from equations (ii) and (iii)
The total energy of ball1 hi higher than the total energy of ball2.
Answer:
Explanation:
From the equation of Newton's laws of motion
v = u + at where v is final velocity , u is initial velocity and t is time.
150 = 0 + a x 3
a = 50 m / s ²
s = ut + 1/2 at² ; s is distance travelled
s = 50 x 3 + .5 x 50 x 3²
= 150 + 225
= 375 m .
Answer:
Using two to three sentences, summarize what you investigated and observed in this lab. I investigated that Most of my planets and moons had the element carbon in them. I observed that Different elements absorb different wavelengths of light.
Astronomers use a wide variety of technology to explore space and the electromagnetic spectrum; why do you believe it is essential to use many types of equipment when studying space?
It is essential to use a number of telescopes sensitive to different parts of the electromagnetic spectrum to study objects in space. Even though all light is fundamentally the same thing, the way that astronomers observe light depends on the portion of the spectrum they wish to study. Tools are useful, such as detectors that help see the different wavelengths of light. Not all light can get through the Earth's atmosphere, so for some wavelengths we have to use telescopes aboard satellites.
If carbon was the most common element found in the moons and planets, what element is missing that would make them similar to Earth? Explain why. (Hint: Think about the carbon cycle.)
The missing element that would make moons and other planets similar to earth is oxygen. The two make carbon dioxide.
We know that the electromagnetic spectrum uses wavelengths and frequencies to determine a lot about outer space. How does it help us find out the make-up of stars?
electromagnetic radiation Explanation, astronomers observe the wavelengths by putting telescopes on mountain tops and take results of what they are seeing
Why might it be useful to determine the elements that a planet or moon is made up of?
It might be useful so we can make new discoveries of life or even plants on other planets and moons. And discover maybe even more moons one other planets.
Hope this helps!!!!
Explanation: