The density is 3.144 g / cm^3.
<u>Explanation</u>:
If effective number of atom in NaCl type structure, z = 4
a = 705.2 pm ⇒ In centimeter = 705.2
10^-10
Na = 6.023
10^23
density = (molecular weight) (z) / (Na) (a^3)
where molecular weight of KI is 166 g,
Z represents the atomic number
density = (molecular weight) (z) / (Na) (a^3)
= (166
4) / (6.023
10^23)
(705.2
10^-10)
density = 3.144 g / cm^3.
In order to solve this, we need to know the standard cell potentials of the half reaction from the given overall reaction.
The half reactions with their standard cell potentials are:
<span>2ClO−3(aq) + 12H+(aq) + 10e- = Cl2(g) + 6H2O(l)
</span><span>E = +1.47
</span>
<span>Br(l) + 2e- = 2Br-
</span><span>E = +1.065
</span>
We solve for the standard emf by subtracting the standard emf of the oxidation from the reducation, so:
1.47 - 1.065 = 0.405 V
It’s +21 (c) if i answered late my apologies
Cl2=3.17g/L
Ne=.901g/L
CO2=1.96g/l
therefore Cl2 is the densest gas under the given conditions.
Answer:175⋅mL of the given sulfuric acid
Explanation: