Answer:
b. HCOOH/ NaHCOO.
Explanation:
A buffer system may be formed in one of two forms:
- A weak acid with its conjugate base.
- A weak base with its conjugate acid.
Chose the pairs below that you could use to make a buffered solution.
a. HCI/NaOH. NO. HCl is a strong acid and NaOH is a strong base.
b. HCOOH/ NaHCOO. YES. HCOOH is a weak acid and HCOO⁻ (coming from NaHCOO) is its conjugate base.
c. HNO₂/H₂SO₃. NO. Both are acids and they are unrelated to each other.
d. NaNO₃/ HNO₃. NO. HNO₃ is a strong acid.
Answer: Esta tendencia es tan regular que el poder de combinación, o valencia, de un elemento se definió una vez como el número de átomos de hidrógeno unidos al elemento en su hidruro. El hidrógeno es el único elemento que forma compuestos en los que los electrones de valencia están en la capa n = 1.
Explanation:
¡Espero que esto ayude!
Answer:
When the weather is nice, many people begin to work on their yards and homes. For many projects, sand is needed as a foundation for a walk or to add to other materials. You could order up twenty million grains of sand and have people really stare at you. You could order by the pound, but that takes a lot of time weighing out. The best bet is to order by the yard, meaning a cubic yard. The loader can easily scoop up what you need and put it directly in your truck.
Avogadro’s Number
It certainly is easy to count bananas or to count elephants (as long as you stay out of their way). However, you would be counting grains of sugar from your sugar canister for a long, long time. Atoms and molecules are extremely small – far, far smaller than grains of sugar. Counting atoms or molecules is not only unwise, it is absolutely impossible. One drop of water contains about 10 22 molecules of water. If you counted 10 molecules every second for 50 years without stopping you would have counted only 1.6 × 10 10 molecules. Put another way, at that counting rate, it would take you over 30 trillion years to count the water molecules in one tiny drop.
Explanation:
Answer:
See explanation
Explanation:
Full molecular equation;
2NH3(aq) + AgNO3(aq) -------> [Ag(NH3)2]NO3(aq)
Full ionic equation
2NH3(aq) + Ag^+(aq) + NO3^-(aq) --------> [Ag(NH3)2]^+(aq) + NO3^-(aq)
Net ionic equation;
2NH3(aq) + Ag^+(aq) --------> [Ag(NH3)2]^+(aq)
When Silver nitrate is mixed with a solution of aqueous ammonia, a white and cloudy solution was observed.
Start by adding the numbers then divide