Answer:
h = 9.57 seconds
Explanation:
It is given that,
Initial speed of Kalea, u = 13.7 m/s
At maximum height, v = 0
Let t is the time taken by the ball to reach its maximum point. It cane be calculated as :




t = 1.39 s
Let h is the height reached by the ball above its release point. It can be calculated using second equation of motion as :

Here, a = -g


h = 9.57 meters
So, the height attained by the ball above its release point is 9.57 meters. Hence, this is the required solution.
Answer:
The discharge of the stream at this location is 40 cubic meters per second.
Explanation:
The discharge is the volume flow rate of the water in the stream. For this purpose we can use the following formula:
Discharge = Volume Flow Rate = (Cross-Sectional Area)(Velocity of Stream)
Volume Flow Rate = (Width of Stream)(Depth of Stream)(Velocity of Stream)
Volume Flow Rate = (4 meters)(2 meters)(5 meters per second)
<u>Volume Flow Rate = 40 cubic meters per second</u>
Therefore, the discharge of the stream at this location is found to be <u>40 cubic meters per second</u>
This result shows that 40 cubic meters volume of water passes or discharges through this point in a time of one second. Hence, this is called the volume flow rate or the discharge of the stream.
Answer:
<h2>volume= 0.85m^3</h2>
Explanation:
<em>The density of a substance is defined as the mass per unit volume of the substance, the unit is in kg/m^3 and it is represented by the greek letter rho</em>
Step one:
given data
we are told that the density of Co2= 1.98 kg/m3
and the mass of Co2 is= 1.70 kg
we know the relation between mass, volume and density is

make volume subject of formula we have

substitute we have

♥ If the wind is strong enough it can do so.
♥ By having a strong enough wind you can blow out the fire before the flame can consume any more vapor.
♥ If the wind is fast enough, like a birthday cake candle for example, the wind will burn out.
Explanation:
Acceleration is the change in speed over a given time period