Chemical equations are to be balanced to be able to follow the law of conservation of mass where it says that mass cannot be created or destroyed. Reactions should be that the mass of the reactants is equal to the mass of the products.
Answer:
The explanation of the processes in which pigments are involved (capturing light and forming ATP and NADPH) is given in the following paragraphs)
Explanation:
Pigments are molecules with the capacity of absorbing light. Each pigment captures light of a specific wavelength. Plants contain different types of pigments like chlorophylls, xanthophylls, carotenoids, and others.
Chloroplasts (organelles present in cells of plants), contain pigmants that absorb solar radiation, triggering a series of reactions collectively known as photosynthesis. When light incides on a pigment, an electron of this molecules is excitated, goes into another level of energy and starts to pass through a series of carrier molecules to finally to a final aceptor of electrons. During this transport, part of the energy contained in the electron is used to generates a hydrogen gradient that provides energy. As a result of these processes, a molecule that is called NADP+ accepts two electrons and an hydrogen to form NADPH, while another molecule known as ADP captures an atom of phosphorous and gives rise to ATP (through the action of a protein called ATP sintase)..
The order of components in a typical flame atomic absorption spectrometer is hollow cathode lamp--flame--monochromator--detector
<u>Explanation:</u>
- The hollow cathode lamp practices a cathode created of the element of interest with a low internal pressure of inert gas.
- Remove scattered light of other wavelengths from the flame. AAS flame includes aiming at first the fuel than the oxidant and then lighting the flame with the instrument's auto-ignition system. Applying flame Ddtroy any analyte ions and breakdown complexes.
- The process of the monochromator is to divide analytical lines photons moving through the flame
- Photomultiplier tube (PMT) as the detector the PMT determines the intensity of photons of the analytical line exiting the monochromator.
Repeat trials multiple times