The neutral atom of lead must have 82 protons while ions can have b or less than 82.
The atomic number of an element is the number of protons in the nucleus of the element.
Also, for neutral atoms, the number of protons equals the number of electrons.
In ionic form, the number of protons/electrons of an atom may vary and be different from that of the neutral form.
Positive charges mean that the ion has less proton than its neutral version while negative charges mean that it has more electrons than its neutral version.
Thus, the neutral atom of lead will contain an equal number of protons as the electrons while its ionic form can have more or less than 82 protons.
More on atoms can be found here: brainly.com/question/803445?referrer=searchResults
Kepler's Law of Planetary Motion consists the movement of planets in the universe
if not? what are the four or three answers for me to answer?
Answer:
Barium<Strontium<Calcium <Magnesium< Beryllium
Explanation:
Electronegativity is defined as the ability of an atom in a bond to attract the shared electrons of the bond towards itself.
Electronegativity is a periodic trend that decreases down the group and increases across the period.
Hence, if i want to arrange Beryllium, Barium, Strontium, Magnesium, Calcium in order of increasing electronegativity, i will have;
Barium<Strontium<Calcium <Magnesium< Beryllium
The answer is 5.4! I found it on a an online calculator!
Answer:
Explanation:
Problem 1
<u>1. Data</u>
<u />
a) P₁ = 3.25atm
b) V₁ = 755mL
c) P₂ = ?
d) V₂ = 1325 mL
r) T = 65ºC
<u>2. Formula</u>
Since the temeperature is constant you can use Boyle's law for idial gases:

<u>3. Solution</u>
Solve, substitute and compute:


Problem 2
<u>1. Data</u>
<u />
a) V₁ = 125 mL
b) P₁ = 548mmHg
c) P₁ = 625mmHg
d) V₂ = ?
<u>2. Formula</u>
You assume that the temperature does not change, and then can use Boyl'es law again.

<u>3. Solution</u>
This time, solve for V₂:

Substitute and compute:

You must round to 3 significant figures:

Problem 3
<u>1. Data</u>
<u />
a) V₁ = 285mL
b) T₁ = 25ºC
c) V₂ = ?
d) T₂ = 35ºC
<u>2. Formula</u>
At constant pressure, Charle's law states that volume and temperature are inversely related:

The temperatures must be in absolute scale.
<u />
<u>3. Solution</u>
a) Convert the temperatures to kelvins:
- T₁ = 25 + 273.15K = 298.15K
- T₂ = 35 + 273.15K = 308.15K
b) Substitute in the formula, solve for V₂, and compute:

You must round to two significant figures: 290 ml
Problem 4
<u>1. Data</u>
<u />
a) P = 865mmHg
b) Convert to atm
<u>2. Formula</u>
You must use a conversion factor.
Divide both sides by 760 mmHg

<u />
<u>3. Solution</u>
Multiply 865 mmHg by the conversion factor:
