A large force is required to accelerate the mass of the bicycle and rider. Once the desired constant velocity is reached, a much smaller force is sufficient to overcome the ever-present frictional forces.
Answer:
hola me llamo bruno y tu?
Explanation:
pero yo soy de mexico
I personally don't (I can't speak for others tho) but I say right twix is better for the memes
Interference and diffraction are the phenomena that support only the wave theory of light. Options 2 and 3 are correct.
<h3 /><h3>What is the interference of waves?</h3>
The result of two or more wave trains flowing in opposite directions on a crossing or coinciding pathways. This phenomenon is known as the interference of waves.
The phenomenon of interference occurs when two wave pulses are traveling along a string toward each other.
The light wave hypothesis states that light behaves like a wave. Since light is an electromagnetic wave, it may be transmitted without a physical medium.
Light has magnetic and electric fields, much like electromagnetic waves do.
Transverse waves, such as those seen in light waves, oscillate in the same direction as the wave's path. A wave of light may experience interference as well as diffraction as a result of these properties.
All of the remaining options are the light phenomenon.
Hence, options 2 and 3 are correct.
To learn more about the interference of waves refer to the link;
brainly.com/question/16098226
#SPJ1
Displacement s = (u+v)*t/2 (t refers to delta time)
= (0.45 + 2.7)*6/2
= 3.15*3
= 9.45 m