Answer:
Object D
Explanation:
Use Newton's Second Law to determine the acceleration that each object has.
The force applied in both cases is 50 N, but the mass for object C and object D is different.
Let's start with object C first:
- F = ma
- 50 N = 10 kg · a
- 50 = 10a
- 5 = a
The acceleration object C undergoes is 5 m/s².
Now let's calculate object D next:
- F = ma
- 50 N = 2 kg * a
- 50 = 2a
- 25 = a
The acceleration object D undergoes is 25 m/s².
Object D has greater acceleration because it has a smaller mass. The object with a smaller mass will accelerate more in order to satisfy Newton's 2nd Law.
Something super duper uper stuper luper nuper tuper zuper yuper fuper guper huper kuper juper wuper special
Answer:
The magnification produced by a plane mirror is +1
means then the size of the image is equal to the size of the object. If m has a magnitude greater than 1 the image is larger than the object, and an m with a magnitude less than 1 means the image is smaller than the object.
Answer:
Most of us have experienced that pivotal peak of pain, anger or frustration in which we want to scream “I hate my life.” Yet, the feeling that a dark cloud has specifically settled over us and our experiences can feel pretty isolating. The truth is, no matter how singled out or overwhelmed we feel, and no matter what area we are struggling in, we are not alone. More than half of U.S. workers are unhappy with their job. One in 10 Americans struggles with depression. All of us have moments of utter despair. Escaping from this hopeless-seeming state may feel impossible. Yet, in reality, we are not doomed, and we are not powerless. No matter what our circumstances, we can all learn tools to help us emerge from the darkest moments in our lives.
Answer:
Yes, it's correct
Explanation:
Newton's second Law states that the acceleration of an object is proportional to the net force applied on it, according to the equation:

where
F is the net force on the object
m is the mass of the object
a is the acceleration of the object
We can re-arrange the previous equation in order to solve explicitely for a, the acceleration, and we find:

So, we see that the acceleration is proportional to the net force and inversely proportional to the mass of the object.