Answer:

Explanation:
For this case we can use the second law of Newton given by:

The friction force on this case is defined as :

Where N represent the normal force,
the kinetic friction coeffient and a the acceleration.
For this case we can assume that the only force is the friction force and we have:

Replacing the friction force we got:

We can cancel the mass and we have:

And now we can use the following kinematic formula in order to find the distance travelled:

Assuming the final velocity is 0 we can find the distance like this:

D, releases a massive amount of energy as heat Hope this helps
Average speed = (1/2) (beginning speed + ending speed)
= (1/2) ( 13 m/s + 30 m/s )
= (1/2) ( 43 m/s )
= 21.5 m/s
Answer:
The time taken to travel is, t = 12 minutes
Explanation:
Given data,
The speed of the car, v = 60 km/h
The distance of travel, d = 12 km
The time taken for the travel is t = ?
The speed is defined as the distance divided by the time taken to travel. The formula for speed is,
v = d/t
∴ t = d/v
t = 12 km / 60 km/h
t = 0.2 h
t = 12 minutes
Hence, the time taken to travel is, t = 12 minutes.
Answer:
27: 85
28:75%
Explanation:
27:68=80
?=100 hence (68×100)÷80
=85
28:<em>1</em><em>8</em><em>/</em><em>2</em><em>4</em><em>×</em><em> </em><em>1</em><em>0</em><em>0</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>7</em><em>5</em><em>%</em>