<span>The force of static friction F equals the coefficient of friction u times the normal force N the object exerts on the surface: F = uN. N is the centripetal force of the wall on the people; N = ma_N, where m is the mass of the people and a_N is the centripetal acceleration.
The people will not slip down if F is greater than the force of gravitation: F = uma_N > mg, or u > g/a_N.
a_N is the velocity v of the people squared divided by the radius of the room r: a_N = v^2/r.
The circumference of the room is 2 pi r = 28.3 m. So v = 28.3 * 0.8 m/sec = 22.6 m/sec.
So a_N = 114 m/sec^2.
g = 9.81 m/sec^2, so u must be at least 9.81/114 = 0.086.</span>
To solve this problem it is necessary to apply the concepts related to frequency as a function of speed and wavelength as well as the kinematic equations of simple harmonic motion
From the definition we know that the frequency can be expressed as
Where,
Therefore the frequency would be given as
The frequency is directly proportional to the angular velocity therefore
Now the maximum speed from the simple harmonic movement is given by
Where
A = Amplitude
Then replacing,
Therefore the maximum speed of a point on the string is 3.59m/s
The North Pole would be your answer
I know this the answer is <span>pressurized liquids if you go on quizlet they will always give you the answer just so you know</span>