Conducting because it occurs when two objects touch and heat is transferred
Answer:
Explanation:
The inclined plane
An inclined plane consists of a sloping surface; it is used for raising heavy bodies. The plane offers a mechanical advantage in that the force required to move an object up the incline is less than the weight being raised (discounting friction). The steeper the slope, or incline, the more nearly the required force approaches the actual weight. Expressed mathematically, the force F required to move a block D up an inclined plane without friction is equal to its weight W times the sine of the angle the inclined plane makes with the horizontal (θ). The equation is F = W sin θ.
The lever
A lever is a bar or board that rests on a support called a fulcrum. A downward force exerted on one end of the lever can be transferred and increased in an upward direction at the other end, allowing a small force to lift a heavy weight.
The wedge
A wedge is an object that tapers to a thin edge. Pushing the wedge in one direction creates a force in a sideways direction. It is usually made of metal or wood and is used for splitting, lifting, or tightening, as in securing a hammer head onto its handle.
The wheel and axle
A wheel and axle is made up of a circular frame (the wheel) that revolves on a shaft or rod (the axle). In its earliest form it was probably used for raising weights or water buckets from wells.
Its principle of operation is best explained by way of a device with a large gear and a small gear attached to the same shaft. The tendency of a force, F, applied at the radius R on the large gear to turn the shaft is sufficient to overcome the larger force W at the radius r on the small gear. The force amplification, or mechanical advantage, is equal to the ratio of the two forces (W:F) and also equal to the ratio of the radii of the two gears (R:r)
Take a look at a simple reaction like the one below:
In this reaction some reactant A is turned into some product B. The rate of reaction can be represented by a decrease in concentration of A over time or as the increase of B over time. This is written:
Answer:
The intensity at 10° from the center is 3.06 × 10⁻⁴I₀
Explanation:
The intensity of light I = I₀(sinα/α)² where α = πasinθ/λ
I₀ = maximum intensity of light
a = slit width = 2.0 μm = 2.0 × 10⁻⁶ m
θ = angle at intensity point = 10°
λ = wavelength of light = 650 nm = 650 × 10⁻⁹ m
α = πasinθ/λ
= π(2.0 × 10⁻⁶ m)sin10°/650 × 10⁻⁹ m
= 1.0911/650 × 10³
= 0.001679 × 10³
= 1.679
Now, the intensity I is
I = I₀(sinα/α)²
= I₀(sin1.679/1.679)²
= I₀(0.0293/1.679)²
= 0.0175²I₀
= 0.0003063I₀
= 3.06 × 10⁻⁴I₀
So, the intensity at 10° from the center is 3.06 × 10⁻⁴I₀
Answer:
The bigger one. Ignoring air resistance, they will fall at the same speed, but the bigger one will hit first because it sticks out lower.
Explanation: