Answer:
The answer to your question is
a) t = 2.55 s
b) t = 5.5 s
Explanation:
Data
vo = 25 m/s
h = 2 m
g = 9.81 m/s
Formula
t = -(vo)/g
a)
t = -(25)/9.81
t = 2.55 s
b)
Tt = 2t
Tt = 2(2.55)
Tt = 5.1 s
Time in the last 10 m
10 = 25t + (1/2)(9.81)t²
Simplify
10 = 25t 4.91t²
4.9t² + 25t - 10 = 0
Solve the equation using an online calculator
t₁ = 0.37 s t₂ = -5.47 s
The correct answer is t₁, t₂ is incorrect because there are no negative answers.
Total time = 5.1 + 0.37
= 5.5 s
Answer:
First, the image moves in and out of focus too quickly, so that it is difficult to precisely adjust the focus. Second, you run the risk of crashing the objective into the slide. Use the coarse focus only with the 4x low power objective. You can use the fine focus knob with all objectives.
Explanation:
Answer:

Explanation:
As we know by the formula of diffraction

so we have
a = slit size
= angular position of Nth minimum
so we will have
for first minimum of 630 nm light


Now for another wavelength second minimum is at 60 degree angle



Answer:
331.75 V
Explanation:
Given:
Number of turns of the coil, N = 40 turns
Area, A = 0.06 m²
Magnetic Field, B = 0.4 T
Frequency, f = 55 Hz
Maximum induce emf, E₀ = NABω
but ω = 2πf
Maximum induce emf, E₀ = NAB(2πf₀)
Maximum induce emf, E₀ = 2πNABf₀
Where;
N is number of turns of the coil
A is area
B is magnetic field
ω is the angular velocity
f is the frequency
E₀ = 2 × π × 40 × 0.06 × 0.4 × 55
E₀ = 342.81 V
The maximum induced emf is 331.75 V
Answer:
a I think hope this helps