Answer:
each resistor is 540 Ω
Explanation:
Let's assign the letter R to the resistance of the three resistors involved in this problem. So, to start with, the three resistors are placed in parallel, which results in an equivalent resistance
defined by the formula:

Therefore, R/3 is the equivalent resistance of the initial circuit.
In the second circuit, two of the resistors are in parallel, so they are equivalent to:

and when this is combined with the third resistor in series, the equivalent resistance (
) of this new circuit becomes the addition of the above calculated resistance plus the resistor R (because these are connected in series):

The problem states that the difference between the equivalent resistances in both circuits is given by:

so, we can replace our found values for the equivalent resistors (which are both in terms of R) and solve for R in this last equation:

Answer:
two places where thermal conduction takes place are gases and liquids, conduction is due to collisions of molecules during their random motion. Hence, the correct option is (C). Note: Though, the particle distances between gases are much more in comparison to solids and liquids, conduction slowly occurs in gases also
Explanation:
i hope it will help you
The type of relationship formed when a megabat eats a fig and drops the seeds in a new location is COMENSALISM. It is an ecological interaction.
<h3>What is commensalism?</h3>
Commensalism is a type of ecological interaction in which one organism benefits (in this case, the tree) and the other organism neither benefits nor harm (the megabat).
Mutualism is a type of ecological association in which both organisms benefit from such interaction.
Conversely, parasitism is a type of ecological interaction in which one organism benefits and the other organism is harmed.
Learn more about commensalism here:
brainly.com/question/16712254
Answer:
3k mph
Explanation:
don't take my answer it is wrong
Answer:
It is connected in series with the circuit
Explanation:
This is because to measure the current in the circuit, the current in the circuit has to flow through the ammeter. As such, the ammeter must be connected in series with the circuit so as to measure the current flowing through the circuit.
So, to measure the current flowing through a circuit with an ammeter, the ammeter must be connected in series with the circuit.