Answer:
1keff=1k1+1k2
see further explanation
Explanation:for clarification
Show that the effective force constant of a series combination is given by 1keff=1k1+1k2. (Hint: For a given force, the total distance stretched by the equivalent single spring is the sum of the distances stretched by the springs in combination. Also, each spring must exert the same force. Do you see why?
From Hooke's law , we know that the force exerted on an elastic object is directly proportional to the extension provided that the elastic limit is not exceeded.
Now the spring is in series combination
F
e
F=ke
k=f/e.........*
where k is the force constant or the constant of proportionality
k=f/e
............................1
also for effective force constant
divide all through by extension
1) Total force is
Ft=F1+F2
Ft=k1e1+k2e2
F = k(e1+e2) 2)
Since force on the 2 springs is the same, so
k1e1=k2e2
e1=F/k1 and e2=F/k2,
and e1+e2=F/keq
Substituting e1 and e2, you get
1/keq=1/k1+1/k2
Hint: For a given force, the total distance stretched by the equivalent single spring is the sum of the distances stretched by the springs in combination.
Answer:
the waves carry energy
Explanation:
this is the way you can write it in short manner
hope it helps you.
MARK me as BRAINLIEST pls
Answer:
1) t = 3.45 s, 2) x = 138 m, 3) v_{y} = -33.81 m /s, 4) v = 52.37 m / s
,
5) θ = -40.2º
Explanation:
This is a projectile exercise, as they indicate that the projectile rolls down the cliff, it goes with a horizontal speed when leaving the cliff, therefore the speed is v₀ₓ = 40 m / s.
1) Let's calculate the time that Taardaen reaches the bottom, we place the reference system at the bottom of the cliff
y = y₀ +
t - ½ g t²
When leaving the cliff the speed is horizontal v_{oy}= 0 and at the bottom of the cliff y = 0
0 = y₀ - ½ g t2
t = √ 2y₀ / g
t = √ (2 60 / 9.8)
t = 3.45 s
2) The horizontal distance traveled
x = v₀ₓ t
x = 40 3.45
x = 138 m
3) The vertical velocity at the point of impact
v_{y} = I go - g t
v_{y} = 0 - 9.8 3.45
v_{y} = -33.81 m /s
the negative sign indicates that the speed is down
4) the resulting velocity at this point
v = √ (vₓ² + v_{y}²)
v = √ (40² + 33.8²)
v = 52.37 m / s
5) angle of impact
tan θ = v_{y} / vx
θ = tan⁻¹ v_{y} / vx
θ = tan⁻¹ (-33.81 / 40)
θ = -40.2º
6) sin (-40.2) = -0.6455
7) tan (-40.2) = -0.845
8) when the projectile falls down the cliff, the horizontal speed remains constant and the vertical speed increases, therefore the resulting speed has a direction given by the angle that is measured clockwise from the x axis
Answer:
27.1m/s
Explanation:
Given parameters:
Height of the building = 30m
Initial velocity = 12m/s
Unknown:
Final velocity = ?
Solution:
We apply one of the kinematics equation to solve this problem:
v² = u² + 2gh
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
h is the height
v² = 12² + (2 x 9.8 x 30)
v = 27.1m/s
You clearly identified the pole you're talking about as the
"north-seeking" pole. Assuming your integrity and sincerity,
we would then naturally expect that pole to seek north, and
point to Earth's north magnetic pole.
I'm confident in this answer also because I have several of
these devices hanging from the ceiling of my office, and I can
attest to the fact that on most clear days, they do in fact point
toward Earth's north magnetic pole.