1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
3 years ago
8

Two elements next to each other that have decreasing atomic masses

Chemistry
1 answer:
pogonyaev3 years ago
5 0

Answer:

  • <u>Tellurium (Te) and iodine (I) are two elements </u><em><u>next to each other that have decreasing atomic masses.</u></em>

Explanation:

The <em>atomic mass</em> of tellurium (Te) is 127.60 g/mol and the atomic mass of iodine (I) is 126.904 g/mol; so, in spite of iodine being to the right of tellurium in the periodic table (because the atomic number of iodine is bigger than the atomic number of tellurium), the atomic mass of iodine is less than the atomic mass of tellurium.

The elements are arranged in increasing order of atomic number in the periodic table.

The atomic number is equal to the number of protons and the mass number is the sum of the protons and neutrons.

The mass number, except for the mass defect, represents the atomic mass of a particular isotope. But the atomic mass of an element is the weighted average of the atomic masses of the different natural isotopes of the element.

Normally, as the atomic number increases, you find that the atomic mass increases, so most of the elements in the periodic table, which as said are arranged in icreasing atomic number order, match with increasing atomic masses. But the relative isotope abundaces of the elements can change that.

It is the case that the most common isotopes of tellurium have atomic masses 128 amu and 130 amu, whilst most common isotopes of iodine have an atomic mass 127 amu. As result, tellurium has an average atomic mass of 127.60 g/mol  whilst iodine has an average atomic mass of 126.904 g/mol.

You might be interested in
Compare and contrast Aufbau principle and the Pauli exclusion principle.
lapo4ka [179]

Answer: Pauli exclusion principle: only two electrons can occupy the same orbital and they must have opposite spin directions

Explanation:

6 0
3 years ago
If a measurement is said to be precise this means that it is what​
Gala2k [10]

On point? Do you have any options?

6 0
3 years ago
Read 2 more answers
Which energy change occurs during boiling?
satela [25.4K]
Heat energy is absorbed by the substance
4 0
3 years ago
Read 2 more answers
According to Hund's rule of maximum spin multiplicity, how many singly-occupied orbitals are there in the valence shells of the
leva [86]

Answer:

A) carbon  - 2

B) cobalt  - 3

C) sulfur   - 2

D) fluorine   - 1

E) titanium   - 2

F) germanium  - 2

Explanation:

Hund's rule of maximum multiplicity:-

Firstly, every orbital which is present in the sublevel is singly occupied and then the orbital is doubly occupied.  

(A) Carbon.

The electronic configuration is -  

1s^22s^22p^2

Thus, 2s orbital is fully filled and p orbital can singly filled 3 electrons. Thus, Carbon has 2 singly occupied orbitals.

(B) Cobalt.

The electronic configuration is -  

1s^22s^22p^63s^23p^63d^{7}4s^2

Thus, 4s orbital is fully filled and d orbital can singly filled 5 electrons. Thus, 4 electrons will be paired in 2 orbitals and 3 orbitals will be singly filled in cobalt.

(C) Sulfur.

The electronic configuration is -  

1s^22s^22p^63s^23p^4

Thus, 3s orbital is fully filled and p orbital can singly filled 3 electrons. Thus, 2 electrons will be paired in 1 orbital and 2 orbitals will be singly filled in sulfur.

D) fluorine

The electronic configuration is -  

1s^22s^22p^5

Thus, 2s orbital is fully filled and p orbital can singly filled 3 electrons. Thus, 4 electrons will be paired in 2 orbitals and 1 orbital will be singly filled in fluorine.

E) Titanium

The electronic configuration is -  

1s^22s^22p^63s^23p^63d^{2}4s^2

Thus, 4s orbital is fully filled and d orbital can singly filled 5 electrons. Thus, 2 orbitals will be singly filled in titanium.

F) Germanium

The electronic configuration is -  

1s^22s^22p^63s^23p^63d^{10}4s^24p^2

Thus, 4s, 3d orbitals are fully filled and p orbital can singly filled 3 electrons. Thus, Germanium has 2 singly occupied orbitals.

4 0
3 years ago
What properties do ionic compounds have?
spin [16.1K]
High melting point and conducts electricity when dissolved in water :)
5 0
3 years ago
Other questions:
  • The following Lewis diagram represents the valence electron configuration of a main-group element. This element is in group 2A A
    13·1 answer
  • I need to know this because I was absent and he was going and could not help me with it so I am on my own
    11·2 answers
  • How many valance electrons are in group 16
    5·2 answers
  • Several types of RNA are involved in carrying out protein synthesis. Beginning with the information copied from DNA, in what ord
    12·2 answers
  • In order for a gas to condense to a liquid, the attraction between its molecules _____.
    7·2 answers
  • 50 POINTS
    13·1 answer
  • Determine the concentration of an HBr solution if a 45.00 mL aliquot of the solution yields 0.5555 g AgBr when added to a soluti
    9·2 answers
  • What type of bonds connect the bases to each other.
    8·2 answers
  • Would the plastic have a positive charge, negative charge, or no charge? *
    10·1 answer
  • What happens to the energy absorbed during an endothermic reaction
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!