That depends. What kind of change are you talking about? But
Mass<span> through chemical </span>change<span> stays the same as well. Example: burning paper, the ash left behind is not all of the </span>mass<span> of the reactants, Carbon dioxide, and other </span>substances<span> also makeup</span>mass<span> but just is not seen
</span>
Answer:
See figure 1
Explanation:
In the structure of nylon 6,6 we have <u>amide groups</u>. In this functional group, We have a nitrogen bond to hydrogen, so in this bond, we will have a <u>dipole</u>, due to the <u>electronegativity difference</u>. Nitrogen has more electronegativity than hydrogen, therefore a <u>positive dipole</u> would be generated in the hydrogen atom. Additionally, in the <u>carbonyl group</u> (C=O) due to the oxygen, we will have also a <u>dipole</u>, in this case, a <u>negative dipole</u> because the oxygen atom has <u>more electronegativity</u> (compare with carbon).
When we put two strings of nylon 6,6 the positive dipole will interact with the negative dipole and vice-versa and we will obtain the <u>"hydrogen bonds"</u>.
See figure 1
I hope it helps!
Answer:
The study of the human body as a machine for the performance of work has its foundations in three major areas of study—namely, mechanics, anatomy, and physiology; more specifically, biomechanics, musculoskeletal anatomy, and neuromuscular physiology. Explanation: