Answer:
30%
Explanation:
<em>This is the chemical formula for zinc bromate: Zn(BrO₃)₂. Calculate the mass percent of oxygen in zinc bromate. Round your answer to the nearest percentage.</em>
Step 1: Determine the mass of 1 mole of Zn(BrO₃)₂
M(Zn(BrO₃)₂) = 1 × M(Zn) + 2 × M(Br) + 6 × M(O)
M(Zn(BrO₃)₂) = 1 × 65.38 g/mol + 2 × 79.90 g/mol + 6 × 16.00 g/mol
M(Zn(BrO₃)₂) = 321.18 g/mol
Step 2: Determine the mass of oxygen in 1 mole of Zn(BrO₃)₂
There are 6 moles of atoms of oxygen in 1 mole of Zn(BrO₃)₂.
6 × m(O) = 6 × 16.00 g = 96.00 g
Step 3: Calculate the mass percent of oxygen in Zn(BrO₃)₂
%O = mO/mZn(BrO₃)₂ × 100%
%O = 96.00 g/321.18 g × 100% ≈ 30%
Oxidation numbers is the right answer
Answer:
The order of solubility is AgBr < Ag₂CO₃ < AgCl
Explanation:
The solubility constant give us the molar solubilty of ionic compounds. In general for a compound AB the ksp will be given by:
Ksp = (A) (B) where A and B are the molar solubilities = s² (for compounds with 1:1 ratio).
It follows then that the higher the value of Ksp the greater solubilty of the compound if we are comparing compounds with the same ionic ratios:
Comparing AgBr: Ksp = 5.4 x 10⁻¹³ with AgCl: Ksp = 1.8 x 10⁻¹⁰, AgCl will be more soluble.
Comparing Ag2CO3: Ksp = 8.0 x 10⁻¹² with AgCl Ksp = AgCl: Ksp = 1.8 x 10⁻¹⁰ we have the complication of the ratio of ions 2:1 in Ag2CO3, so the answer is not obvious. But since we know that
Ag2CO3 ⇄ 2 Ag⁺ + CO₃²₋
Ksp Ag2CO3 = 2s x s = 2 s² = 8.0 x 10-12
s = 4 x 10⁻12 ∴ s= 2 x 10⁻⁶
And for AgCl
AgCl ⇄ Ag⁺ + Cl⁻
Ksp = s² = 1.8 x 10⁻¹⁰ ∴ s = √ 1.8 x 10⁻¹⁰ = 1.3 x 10⁻⁵
Therefore, AgCl is more soluble than Ag₂CO₃
The order of solubility is AgBr < Ag₂CO₃ < AgCl
What are organic and inorganic compounds? Organic chemistry is the study of the carbon compounding molecules. Inorganic chemistry, by contrast, is the study of all compounds that do NOT contain carbon compounds.