Answer:
The fluid level difference in the manometer arm = 22.56 ft.
Explanation:
Assumption: The fluid in the manometer is incompressible, that is, its density is constant.
The fluid level difference between the two arms of the manometer gives the gage pressure of the air in the tank.
And P(gage) = ρgh
ρ = density of the manometer fluid = 60 lbm/ft³
g = acceleration due to gravity = 32.2 ft/s²
ρg = 60 × 32.2 = 1932 lbm/ft²s²
ρg = 1932 lbm/ft²s² × 1lbf.s²/32.2lbm.ft = 60 lbf/ft³
h = fluid level difference between the two arms of the manometer = ?
P(gage) = 9.4 psig = 9.4 × 144 = 1353.6 lbf/ft²
1353.6 = ρg × h = 60 lbf/ft³ × h
h = 1353.6/60 = 22.56 ft
A diagrammatic representation of this setup is presented in the attached image.
Hope this helps!
Complete Question
The complete question is shown on the first uploaded image
Answer:
a) The required additional minterms for f so that f has eight primary implicants with two literals and no other prime implicant are
and 
b) The essential prime implicant are
and 
c) The minimum sum-of-product expression for f are
Explanation:
The explanation is shown on the second third and fourth image
Answer:
a) A suspended floor is a ground floor with a void underneath the structure. The floor can be formed in various ways, using timber joists, precast concrete panels, block and beam system or cast in-situ with reinforced concrete. However, the floor structure is supported by external and internal walls.
b) Soil exploration consists of determining the profile of the natural soil deposits at the site, taking the soil samples and determining the engineering properties of soils using laboratory tests as well as in-situ testing methods
c) Bulking in sand Occurs When dry sand interacts with the atmospheric moisture. Presence of moisture content forms a thin layer around sand particles. This layer generates the force which makes particles to move aside to each other. This results in the increase of the volume of sand.
d) In a nutshell, bearing capacity is the capacity of soil to support the loads that are applied to the ground above. It depends primarily on the type of soil, its shear strength and its density. It also depends on the depth of embedment of the load – the deeper it is founded, the greater the bearing capacity.
Explanation:
<h2>please follow me</h2>
Answer:
<em><u>THE ANSWER IS: B</u></em>
Explanation:
I took the Unit test and the answer is B
Answer:
Explanation:
Given that:
The Inside pressure (p) = 1402 kPa
= 1.402 × 10³ Pa
Force (F) = 13 kN
= 13 × 10³ N
Thickness (t) = 18 mm
= 18 × 10⁻³ m
Radius (r) = 306 mm
= 306 × 10⁻³ m
Suppose we choose the tensile stress to be (+ve) and the compressive stress to be (-ve)
Then;
the state of the plane stress can be expressed as follows:

Since d = 2r
Then:







When we take a look at the surface of the circular cylinder parabolic variation, the shear stress is zero.
Thus;
