Answer:
A) Sump pit
Explanation:
A wastewater typically refers to a body of water that has contaminated through human use in homes, offices, schools, businesses etc. Wastewater are meant to be disposed in accordance with the local regulations and standards because they are unhygienic for human consumption or use.
Generally, many homes use a floor drain in their bathrooms and toilets to remove wastewater in order to mitigate stagnation and to improve hygiene. A floor drain can be defined as a material installed on floors for the continuous removal of any stagnant wastewater in buildings. Wastewater flows into a sump pit once it is released into a floor drain through the use of a pipe such as a polyvinyl chloride (PVC) pipe, which directly connects the floor drain to the sump pit. The wastewater can the be removed from the sump pit when it is filled up through the use of a pump.
Answer:
There is not going to be pressure build up in the system,that is isobaric process.
Explanation:
Assumptions to be made
1. No mass is gained or lost during the heating process.
2. There are no friction losses,so work is transmitted efficiently.
3. It was started the water in the drum and its surrounding have same temperature.
4. This system is closed,so there is no mass transfer across its boundaries.
Answer:
When the uneven burning of the fuel takes place due to the incorrect air/fuel mixture inside the engine cylinder, a knocking sound is observed. This is called as the engine knocking.
Explanation:
When the uneven burning of the fuel takes place due to the incorrect air/fuel mixture inside the engine cylinder, a knocking sound is observed. This is called as the engine knocking.
The engine knock problem can be caused due to the following reason
a) When the octane rating of the fuel used is low.
b) The deposition of the carbon around the cylinder walls takes place.
c) The spark plug used in the vehicle is not correct.
Answer: The energy system related to your question is missing attached below is the energy system.
answer:
a) Work done = Net heat transfer
Q1 - Q2 + Q + W = 0
b) rate of work input ( W ) = 6.88 kW
Explanation:
Assuming CPair = 1.005 KJ/Kg/K
<u>Write the First law balance around the system and rate of work input to the system</u>
First law balance ( thermodynamics ) :
Work done = Net heat transfer
Q1 - Q2 + Q + W = 0 ---- ( 1 )
rate of work input into the system
W = Q2 - Q1 - Q -------- ( 2 )
where : Q2 = mCp T = 1.65 * 1.005 * 293 = 485.86 Kw
Q2 = mCp T = 1.65 * 1.005 * 308 = 510.74 Kw
Q = 18 Kw
Insert values into equation 2 above
W = 6.88 Kw
Examples of quality assurance activities include process checklists, process standards, process documentation and project audit. Examples of quality control activities include inspection, deliverable peer reviews and the software testing process. You may like to read more about the quality assurance vs quality control.