<span>The lagrangian center of mass between two particles of equal mass can be calculated using the following equation: L=12MV2â’Uext.+Nâ‘i=112mi~v2iâ’Uint. M=â‘mi is the total mass, V is the speed of the center of mass, Uext.=â‘Uext.,i, and ~vi is the speed of the ith particle relative to the center of mass.</span>
Answer:
The mother has to sit 2.17 ft from the center on the other side of the seesaw.
Explanation:
We are trying to find the sum of torques given by the weights of mother and daughter to be zero.
If the torque of the daughter on one side of the pivoting point is given by:
5.5 ft x 63.5 lb x g = 349.25 g ft lb
we need that the absolute value of the torque exerted by the mom (160.9 lb) to be the same in magnitude (and of course opposite direction). So we assume that "d" is the distance at which the mother locates to make this torque equal in magnitude to her daughter's torque:
d x 160.9 lb x g = 349.25 g ft lb
d = 2.17 ft
Answer:

Explanation:
It is given that, a proton moves at constant velocity, through a region in which there is an electric field and a magnetic field such that,
The electric field is, E = 800 V/m
Magnetic field, B = 0.25 T
We know that the net force in the region of magnetic and electric field is given by Lorentz forces. But here, the proton moves with constant velocity. So, the net force acting on it is 0.
i.e.

Hence, this is the required solution.
Answer:
λ = 3.2 x 10⁻⁷ m = 320 nm
Explanation:
The relationship between the velocity of electromagnetic waves (UV rays) and the their frequency is:
v = fλ
where,
v = c = speed of the electromagnetic waves (UV rays) = speed of light
c = 3 x 10⁸ m/s
f = frequency of the electromagnetic waves (UV rays) = 9.38 x 10¹⁴ Hz
λ = wavelength of the electromagnetic waves (UV rays) = ?
Therefore, substituting the values in the relation, we get:
3 x 10⁸ m/s = (9.38 x 10¹⁴ Hz)(λ)
λ = (3 x 10⁸ m/s)/(9.38 x 10¹⁴ Hz)
<u>λ = 3.2 x 10⁻⁷ m = 320 nm</u>
So, the radiation of <u>320 nm</u> wavelength is absorbed by Ozone.