Answer:
4.535 N.m
Explanation:
To solve this question, we're going to use the formula for moment of inertia
I = mL²/12
Where
I = moment of inertia
m = mass of the ladder, 7.98 kg
L = length of the ladder, 4.15 m
On solving we have
I = 7.98 * (4.15)² / 12
I = (7.98 * 17.2225) / 12
I = 137.44 / 12
I = 11.45 kg·m²
That is the moment of inertia about the center.
Using this moment of inertia, we multiply it by the angular acceleration to get the needed torque. So that
τ = 11.453 kg·m² * 0.395 rad/s²
τ = 4.535 N·m
<h3>Answer;</h3>
<u>It would make the lens stronger. </u>
<h3>Explanation;</h3>
- The focal length is the distance between the optical center or the center of the lens to the focal point of a convex or concave lens.
- The power of the convex lens is lens ability to undertake refraction or bend light. It is given as the reciprocal of focal length.
- Power of the lens = 1/ f; therefore the smaller the focal length the higher the power and the larger the focal length the lower the power.
- Thus; decreasing the focal length of a convex lens makes the lens stronger.
Answer:
The torque about the origin is 
Explanation:
Torque
is the cross product between force
and vector position
respect a fixed point (in our case the origin):

There are multiple ways to calculate a cross product but we're going to use most common method, finding the determinant of the matrix:
![\overrightarrow{r}\times\overrightarrow{F} =-\left[\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k}\\ F1_{x} & F1_{y} & F1_{z}\\ r_{x} & r_{y} & r_{z}\end{array}\right]](https://tex.z-dn.net/?f=%20%5Coverrightarrow%7Br%7D%5Ctimes%5Coverrightarrow%7BF%7D%20%3D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Chat%7Bi%7D%20%26%20%5Chat%7Bj%7D%20%26%20%5Chat%7Bk%7D%5C%5C%20F1_%7Bx%7D%20%26%20F1_%7By%7D%20%26%20F1_%7Bz%7D%5C%5C%20r_%7Bx%7D%20%26%20r_%7By%7D%20%26%20r_%7Bz%7D%5Cend%7Barray%7D%5Cright%5D%20)



Wind is caused by differences in the atmospheric pressure. When a difference in atmospheric pressure exists, air moves from the higher to the lower pressure area, resulting in winds of various speeds. On a rotating planet, air will also be deflected by the Coriolis effect, except exactly on the equator.
Answer: The ice absorb 6671.1 kJ of thermal energy.
Explanation:
The conversions involved in this process are :


Now we have to calculate the enthalpy change.

where,
= enthalpy change = ?
m = mass of ice = 20.0 kg =
(1kg=1000g)
n = number of moles of ice= 
= enthalpy change for fusion = 6.01 KJ/mole = 6010 J/mole
Now put all the given values in the above expression, we get

(1 kJ = 1000 J)
Therefore, the enthalpy change is, 6671.1 kJ