Answer:
mass of CO 2 = M r x number of moles of CO 2 = 44.0 × 0.010 = 0.44 g
Explanation:
Answer:
the quiz grade so the first option
Explanation:
ur welcome
Answer:
The molarity of 2.0 liters of an aqueous solution that contains 0.50 mol of potassium iodide is 0.25M.HOW TO CALCULATE MOLARITY:The molarity of a solution can be calculated by dividing the number of moles by its volume. That is;Molarity = no. of moles ÷ volumeAccording to this question, 2.0 liters of an aqueous solution that contains 0.50 mol of potassium iodide. The molarity is calculated as follows:Molarity = 0.50mol ÷ 2LMolarity = 0.25MTherefore, the molarity of 2.0 liters of an aqueous solution that contains 0.50 mol of potassium iodide is 0.25M.Learn more about molarity at: brainly.com/question/2817451
Explanation:
Mark me brainliest please!!! I spent a lot of time on this!!
Answer:
(1) 4.2 × 10⁻⁴ mol·L⁻¹; (2) 4.3 × 10⁻⁴ mol·L⁻¹; (3) The results agree.
Explanation:
1. Exact solution using α
HA + H₂O ⇌ H₃O⁺ + A⁻
I/mol·L⁻¹: 0.010 0 0
C/mol·L⁻¹: -0.010α +0.010α +0.010α
E/mol·L⁻¹: 0.010(1-α) 0.010α 0.010α
![K_{\text{a}} = \dfrac{\text{[H$_{3}$O$^{+}$][A$^{-}$]}}{\text{[HA]}} = 1.8 \times 10^{-5}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Ba%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BH%24_%7B3%7D%24O%24%5E%7B%2B%7D%24%5D%5BA%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D%20%3D%201.8%20%5Ctimes%2010%5E%7B-5%7D)
![\begin{array}{rcl}\dfrac{\text{[H$_{3}$O$^{+}$][A$^{-}$]}}{\text{[HA]}}& = &1.8 \times 10^{-5}\\\\ \dfrac{0.010\alpha\times 0.010\alpha }{0.010(1-\alpha)}& = &1.8 \times 10^{-5}\\\\ 0.000100\alpha^{2} & = & 0.010(1-\alpha)\times1.8 \times 10^{-5} \\& = &(0.010-0.010\alpha) \times 1.8 \times 10^{-5}\\& = & 1.8 \times 10^{-7} - 1.8 \times 10^{-7}\alpha\\0.000100\alpha^{2} + 1.8 \times 10^{-7}\alpha - 1.8 \times 10^{-7}& = & 0\\\alpha^{2}+ 0.00180\alpha - 0.00180& = & 0\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7D%5Cdfrac%7B%5Ctext%7B%5BH%24_%7B3%7D%24O%24%5E%7B%2B%7D%24%5D%5BA%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D%26%20%3D%20%261.8%20%5Ctimes%2010%5E%7B-5%7D%5C%5C%5C%5C%20%5Cdfrac%7B0.010%5Calpha%5Ctimes%200.010%5Calpha%20%7D%7B0.010%281-%5Calpha%29%7D%26%20%3D%20%261.8%20%5Ctimes%2010%5E%7B-5%7D%5C%5C%5C%5C%200.000100%5Calpha%5E%7B2%7D%20%26%20%3D%20%26%200.010%281-%5Calpha%29%5Ctimes1.8%20%5Ctimes%2010%5E%7B-5%7D%20%5C%5C%26%20%3D%20%26%280.010-0.010%5Calpha%29%20%5Ctimes%201.8%20%5Ctimes%2010%5E%7B-5%7D%5C%5C%26%20%3D%20%26%201.8%20%5Ctimes%2010%5E%7B-7%7D%20-%201.8%20%5Ctimes%2010%5E%7B-7%7D%5Calpha%5C%5C0.000100%5Calpha%5E%7B2%7D%20%2B%201.8%20%5Ctimes%2010%5E%7B-7%7D%5Calpha%20-%201.8%20%5Ctimes%2010%5E%7B-7%7D%26%20%3D%20%26%200%5C%5C%5Calpha%5E%7B2%7D%2B%200.00180%5Calpha%20-%200.00180%26%20%3D%20%26%200%5C%5C%5Cend%7Barray%7D)
a = 1; b = 0.00180; c = -0.00180
Solve using the quadratic formula
α = 0.041 536
[H₃O⁺] = 0.010× 0.0415 mol·L⁻¹ = 4.2 × 10⁻⁴ mol·L⁻¹
2. Approximate solution assuming x is negligible
HA + H₂O ⇌ H₃O⁺ + A⁻
I/mol·L⁻¹: 0.010 0 0
C/mol·L⁻¹: -x +x +x
E/mol·L⁻¹: 0.010 x x
![\begin{array}{rcl}\dfrac{\text{[H$_{3}$O$^{+}$][A$^{-}$]}}{\text{[HA]}}& = &1.8 \times 10^{-5}\\\\ \dfrac{x\times x}{0.010}& = &1.8 \times 10^{-5}\\\\ x^{2} & = & 0.010\times1.8 \times 10^{-5} \\& = &1.8 \times 10^{-7}\\x & = & \sqrt{1.8 \times 10^{-7}}\\& = & \mathbf{4.3 \times 10^{-4}}\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brcl%7D%5Cdfrac%7B%5Ctext%7B%5BH%24_%7B3%7D%24O%24%5E%7B%2B%7D%24%5D%5BA%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D%26%20%3D%20%261.8%20%5Ctimes%2010%5E%7B-5%7D%5C%5C%5C%5C%20%5Cdfrac%7Bx%5Ctimes%20x%7D%7B0.010%7D%26%20%3D%20%261.8%20%5Ctimes%2010%5E%7B-5%7D%5C%5C%5C%5C%20x%5E%7B2%7D%20%26%20%3D%20%26%200.010%5Ctimes1.8%20%5Ctimes%2010%5E%7B-5%7D%20%5C%5C%26%20%3D%20%261.8%20%5Ctimes%2010%5E%7B-7%7D%5C%5Cx%20%26%20%3D%20%26%20%5Csqrt%7B1.8%20%5Ctimes%2010%5E%7B-7%7D%7D%5C%5C%26%20%3D%20%26%20%5Cmathbf%7B4.3%20%5Ctimes%2010%5E%7B-4%7D%7D%5C%5C%5Cend%7Barray%7D)
[H₃O⁺] = 0.010× 0.0415 mol·L⁻¹ = 4.3 × 10⁻⁴ mol·L⁻¹
3. Compare the results
The initial concentrations were known to two significant figures. The results agree to two significant figures ( ±1 unit in the second significant figure).