Answer:
When the brakes are applied the in the typical double transverse wishbone front suspension, it "drives" the car ground due to the setting of the link-type system pivot points on the lower wishbone are have parallel alignment to the road
Explanation:
In order to minimize the car's reaction to the application of the brakes, the front and rear pivot are arranged with the lower wishbone's rear pivot made to be higher than the front pivot as such the inclined wishbone torque results in an opposing vertical force to the transferred extra weight from the back due to breaking.
Answer:
The time required is 10.078 hours or 605 min
Explanation:
The formula to apply here is ;
K=(d²-d²₀ )/t
where t is time in hours
d is grain diameter to be achieved after heating in mm
d₀ is the grain diameter before heating in mm
Given
d=5.5 × 10^-2 mm
d₀=2.4 × 10^-2 mm
t₁= 500 min = 500/60 =25/3 hrs
t₂=?
n=2.2
First find K
K=(d²-d²₀ )/t₁
K={ (5.1 × 10^-2 mm)²-(2.4 × 10−2 mm)² }/ 25/3
K=(0.051²-0.024²) ÷25/2
K=0.000243 mm²/h
Re-arrange equation for K ,to get the equation for d as;
d=√(d₀²+ Kt) where now t=t₂

Answer:
O is truse is the best answer hhahahha
Explanation:
Answer:
Hence, the three effects of electric current are heating effect, magnetic effect and chemical effect.
Answer:
Tso = 28.15°C
Explanation:
given data
t2 = 21 mm
ki = 0.026 W/m K
t1 = 9 mm
kp = 180 W/m K
length of the roof is L = 13 m
net solar radiation into the roof = 107 W/m²
temperature of the inner surface Ts,i = -4°C
air temperature is T[infinity] = 29°C
convective heat transfer coefficient h = 47 W/m² K
solution
As when energy on the outer surface at roof of a refrigerated truck that is balance as
Q =
.....................1
Q =
.....................2
now we compare both equation 1 and 2 and put here value
solve it and we get
Tso = 28.153113
so Tso = 28.15°C