Answer:38
Step-by-step explanation:multiple
Answer:
-4x=4
Step-by-step explanation:
-4x+7=11 subtract 7 add to the 11 answer-4x=4
Answer:
sorry I don't know about this Question
Answer:
Step-by-step explanation:
4) parallel because 118° is a supplement to 62° and the corresponding angles are both 118°
5) NOT parallel. The labeled angles sum to 120° and would sum to 180° for parallel lines.
6) NOT parallel. see pic.
If parallel, extending a line to intersect ℓ₁ makes an opposite internal angle which would also be 48°. The created triangle would have its third angle at 180 - 90 - 48 = 42° which is opposite a labeled 48° angle, which is false, so the lines cannot be parallel
7)
b = 78° as it corresponds with a labeled angle above it
a = 180 - 78 = 102° as angles along a line from a common vertex sum to 180
f = is an opposite angle to 180 - 78 - 44 = 58° as angles along a line from a common vertex sum to 180
e = 180 - 90 - 64 = 26° as angles along a line from a common vertex sum to 180
c = 58° as it corresponds with f
d = 180 - 58 = 122° as angles along a line from a common vertex sum to 180
Using the hypergeometric distribution, it is found that there is a 0.0273 = 2.73% probability that the third defective bulb is the fifth bulb tested.
In this problem, the bulbs are chosen without replacement, hence the <em>hypergeometric distribution</em> is used to solve this question.
<h3>What is the hypergeometric distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- N is the size of the population.
- n is the size of the sample.
- k is the total number of desired outcomes.
In this problem:
- There are 12 bulbs, hence N = 12.
- 3 are defective, hence k = 3.
The third defective bulb is the fifth bulb if:
- Two of the first 4 bulbs are defective, which is P(X = 2) when n = 4.
- The fifth is defective, with probability of 1/8, as of the eight remaining bulbs, one will be defective.
Hence:


0.2182 x 1/8 = 0.0273.
0.0273 = 2.73% probability that the third defective bulb is the fifth bulb tested.
More can be learned about the hypergeometric distribution at brainly.com/question/24826394