<em>Let </em><em>the </em><em>mass </em><em>be </em><em>X </em><em>g</em>
<em>percentage </em><em>=</em><em> </em><em>X/</em><em> </em><em>6.</em><em>5</em><em>0</em><em> </em><em>*</em><em> </em><em>100 </em><em>=</em><em>2.</em><em>2</em><em>%</em>
<em>X=</em><em> </em><em>0.</em><em>1</em><em>4</em><em>3</em><em> </em><em>g</em>
<em>The </em><em>mass </em><em>is </em><em>0.</em><em>1</em><em>4</em><em>3</em><em> </em><em>g</em>
Answer:
Procedure (2)
Explanation:
Assume the dialyses come to equilibrium in the allotted times.
Procedure (1)
If you are dialyzing 5 mL of sample against 4 L of water, the concentration of NaCl will be decreased by a factor of

Procedure (2)
For the first dialysis, the factor is

After a second dialysis, the original concentration of NaCl will be reduced by a factor of

Procedure (2) is more efficient by a factor of

about 30 kilometers per second
At what speed does the Earth move around the Sun? (Beginner) Short version: Earth's average orbital speed is about 30 kilometers per second. In other units, that's about 19 miles per second, or 67,000 miles per hour, or 110,000 kilometers per hour (110 million meters per hour).
Hope This Helps! Have A Nice Day!!
Answer:
![[I_2]=[Br]=0.31M](https://tex.z-dn.net/?f=%5BI_2%5D%3D%5BBr%5D%3D0.31M)
Explanation:
Hello there!
In this case, according to the given information, it is possible for us to set up the following chemical equation at equilibrium:

Now, we can set up the equilibrium expression in terms of x (reaction extent) whereas the initial concentration of both iodine and bromine is 0.5mol/0.250L=2.0M:
![K=\frac{[IBr]^2}{[I_2][Br_2]} \\\\1.2x10^2=\frac{(2x)^2}{(2.0-x)^2}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BIBr%5D%5E2%7D%7B%5BI_2%5D%5BBr_2%5D%7D%20%5C%5C%5C%5C1.2x10%5E2%3D%5Cfrac%7B%282x%29%5E2%7D%7B%282.0-x%29%5E2%7D)
Thus, we solve for x as show below:

Therefore, the concentrations of both bromine and iodine are:
![[I_2]=[Br]=2.0M-1.69M=0.31M](https://tex.z-dn.net/?f=%5BI_2%5D%3D%5BBr%5D%3D2.0M-1.69M%3D0.31M)
Regards!