The answer is maritime air masses
I the HCI is the mass of the equation but not always answer is Mg+HC H20
Lowery-Bronsted theory is applied here. Acc. to this theory Base accepts protons and Acids donate proton.
Part 1:
Aniline is less basic than ethylamine because the lone pair on nitrogen (which accepts proton) is not localized. It resonates throughout the conjugated system of phenyl ring. Hence due to unavailability of electrons for accepting proton it is less basic compare to ethylamine. In ethyl amine the lone pair of electron is localized and available to abstract proton.
Part 2:
In this case the alkyl groups attached to -NH₂ (in ethylamine) and -O⁻ (in ethoxide are same (i.e. CH₃-CH₂-). Ethoxide is more basic than ethylamine because ethoxide is a conjugate base of ethanol (pKa value of ethanol = 15.9 very weak acid) and the conjugate base of weak acid is always a strong base. Secondly, the oxygen atom more Electronegative than Nitrogen atom can attract more electron cloud from alkyl group as compared to Nitrogen in ethylamine. Hence, oxygen in ethoxide attains greater electron cloud than the nitrogen in ethylamine. Therefore, it is more basic than ethylamine.
The reaction between C2H2 and O2 is as follows:
2C2H2 + 5O2 = 4CO2 + 2H2O
After balancing the equation, the reaction ratio between C2H2 and O2 is 2:5.
The moles of O2 in this reaction is 84.0 mol. According to the above ratio, the moles of C2H2 needed to react completely with the O2 is 84.0mole *2/5 = 33.6 mole.
Answer:
The question is incorrect and incomplete. Here's the correct question:
It is difficult to extinguish a fire on a crude oil tanker, because each liter of crude oil releases 2.80 × 10 7 J of energy when burned. To illustrate this difficulty,a) calculate the number of liters of water that must be expended to absorb the energy released by burning 1.00 L of crude oil, if the water has its temperature raised from 23.5 °C to 100 °C , it boils, and the resulting steam is raised to 315 °C. b)Discuss additional complications caused by the fact that crude oil has less density than water.
Explanation:
Q= mc ΔT
Q= heat energy
m is mass
ΔT is change in temperature and c is specific heat capacity
calculating heat for latent heat of vaporisation
Q= ml where l is latent heat of vaporisation
a) Total heat energy used= heat required to raise temperature from 23.5 °C to 100 °C, heat required to boil water and heat required to further raise temperature from 100 °C to 315°C
Q = mc ΔT₁ + mL + mc ΔT₂
Q = m(c ΔT₁ + L + c ΔT₂)
m= Q÷(c ΔT₁ + L + c ΔT₂)
Q= 2.8 X 10⁷ J
c=4186J/kg°C
L=2256 x 10³J/kg
ΔT₁=76.5°C(100°C-23.5°C)
ΔT₂= 215°C(315°C-100°C)
(c ΔT₁ + L + c ΔT₂)= 4186J/kg°C *76.5°C + 2256 x 10³J/kg + 4186J/kg°C*215°C =3476219J/Kg
m= 2.8 x 10⁷J ÷3476219J/Kg
m =80.54 Kg
volume = mass÷ density
=80.54kg ÷ 10³kg/m³( density of water)
=0.0854m³
0.001m³ = 1 lL0.08054m³= 0.08054m³ /0.001m³= 80.54L
VOLUME is 80.54litres
b) since the density of crude is less than the density of water,and 80L of additional water is added, it'll make the crude to float on water thus inhibiting the extinguishing process