1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NikAS [45]
3 years ago
15

Steam enters an adiabatic turbine at 10MPa and 500 C and leaves at 10 kPa with a quality of 90%. Neglecting the changes in kinet

ic and potential energies, determine the mass ow rate required for a power output of 5MW.
Engineering
1 answer:
Amanda [17]3 years ago
3 0

Answer:

flow ( m ) = 4.852 kg/s

Explanation:

Given:

- Inlet of Turbine

        P_1 = 10 MPa

        T_1 = 500 C

- Outlet of Turbine

        P_2 = 10 KPa

        x = 0.9

- Power output of Turbine W_out = 5 MW

Find:

Determine the mass ow rate required

Solution:

- Use steam Table A.4 to determine specific enthalpy for inlet conditions:

          P_1 = 10 MPa

          T_1 = 500 C            ---------- > h_1 = 3375.1 KJ/kg

- Use steam Table A.6 to determine specific enthalpy for outlet conditions:

          P_2 = 10 KPa       -------------> h_f = 191.81 KJ/kg

          x = 0.9                  -------------> h_fg = 2392.1 KJ/kg

          h_2 = h_f + x*h_fg

          h_2 = 191.81 + 0.9*2392.1 = 2344.7 KJ/kg

- The work produced by the turbine W_out is given by first Law of thermodynamics:

          W_out = flow(m) * ( h_1 - h_2 )

          flow ( m ) = W_out / ( h_1 - h_2 )

- Plug in values:

          flow ( m ) = 5*10^3 / ( 3375.1 - 2344.7 )

          flow ( m ) = 4.852 kg/s

You might be interested in
An air standard cycle with constant specific heats is executed in a closed system with 0.003 kg of air and consists of the follo
Vsevolod [243]

Answer:

a) Please see attached copy below

b) 0.39KJ

c)  20.9‰

Explanation:

The three process of an air-standard cycle are described.

Assumptions

1. The air-standard assumptions are applicable.

2. Kinetic and potential energy negligible.

3. Air in an ideal gas with a constant specific heats.

Properties:

The properties of air are gotten from the steam table.

b) T₁=290K ⇒ u₁=206.91 kj/kg, h₁=290.16 kj/kg.

P₂V₂/T₂=P₁V₁/T₁⇒ T₂=P₂T₁/P₁ = 380/95(290K)= 1160K

T₃=T₂(P₃/P₂)⁽k₋1⁾/k =(1160K)(95/380)⁽⁰°⁴/₁.₄⁾ =780.6K

Qin=m(u₂₋u₁)=mCv(T₂-T₁)

=0.003kg×(0.718kj/kg.k)(1160-290)K= 1.87KJ

Qout=m(h₃₋h₁)=mCp(T₃₋T₁)

=0.003KG×(1.005kj/kg.k(780.6-290)K= 1.48KJ

Wnet, out= Qin-Qout = (1.87-1.48)KJ =0.39KJ

c)ηth= Wnet/W₍in₎ =0.39KJ/1.87KJ = 20.9‰

7 0
3 years ago
Compact fluorescent bulbs are much more efficient at producing light than are ordinary incandescent bulbs. They initially cost m
Ilia_Sergeevich [38]

Answer:

ordinary bulb total cost is $39.54

fluorescent bulb total cost is $13.05

amount save = 39.54 - 13.05 = $26.49

resistance = 626.1 ohm

Explanation:

in the 1st part

bulb on time = 3 year = 4380 hours

life of bulb = 750 h

so number of bulb required = \frac{4380}{750}

number of bulb required = 6

cost of 6 bulb is = 6 × 0.75 = $4.5

so

cost of operation is = 100 × 4380 × \frac{0.08}{1000}

cost of operation = $35.04

so total cost will be = $4.5 + $35.04  = $39.54

and

when compare with florescent bulb

time = 3 year = 4380 h

life of bulb = 10000 h

so number of bulb required = \frac{4380}{10000}

number of bulb required = 0.43 = 1

cost of 6 bulb is = 1 × 5 = $5

so

cost of operation is = 23 × 4380 × \frac{0.08}{1000}

cost of operation = $8.05

so total cost will be = $5 + $8.05  = $13.05

in part 2nd

total amount save while compare bulb is

amount save = 39.54 - 13.05 = $26.49

and in part 3rd

resistance of bulb is

resistance = \frac{v^2}{P}

resistance = \frac{120^2}{23}

resistance = 626.1 ohm

6 0
3 years ago
What is the best way to submit your assignments?
Mrac [35]
A. Email your teacher right away. It would be the safest option.
4 0
3 years ago
Read 2 more answers
Because of ____________ people must make choices, and when they choose, they incur a(n)______________.
lbvjy [14]
There must be a photo for me to answer!
3 0
3 years ago
A cylinder with a frictionless piston contains 0.05 m3 of air at 60kPa. The linear spring holding the piston is in tension. The
AleksAgata [21]

Answer:

18 kJ

Explanation:

Given:

Initial volume of air = 0.05 m³

Initial pressure = 60 kPa

Final volume = 0.2 m³

Final pressure = 180 kPa

Now,

the Work done by air will be calculated as:

Work Done = Average pressure × Change in volume

thus,

Average pressure = \frac{60+180}{2}  = 120 kPa

and,

Change in volume = Final volume - Initial Volume = 0.2 - 0.05 = 0.15 m³

Therefore,

the work done = 120 × 0.15 = 18 kJ

4 0
3 years ago
Other questions:
  • Water vapor at 6 MPa, 500°C enters a turbine operating at steady state and expands to 20 kPa. The mass flow rate is 3 kg/s, and
    8·1 answer
  • A ring-shaped seal, made from a viscoelastic material, is used to seal a joint between two rigid pipes. When incorporated in the
    5·1 answer
  • How I do I get nut out of sheets​
    8·2 answers
  • What is the entropy of a closed system in which 25 distinguishable grains of sand are distributed among 1000 distinguishable equ
    5·2 answers
  • How much work is performed if a 400 lb weight is lifted 10 ft ?
    8·1 answer
  • Single point cutting tool removes material from a rotating work piece to generate a cylinder is called • Facing Tuming • Both 1
    6·1 answer
  • What is the term for removing refrigerant in any condition from a system and storing it in an external container without necessa
    10·1 answer
  • What’s the population in the world and why does it keep increasing in bad areas.
    8·1 answer
  • Roku internet service providet​
    11·1 answer
  • What is meant by the acronym ISO
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!