Answer:
/* C Program to rotate matrix by 90 degrees */
#include<stdio.h>
int main()
{
int matrix[100][100];
int m,n,i,j;
printf("Enter row and columns of matrix: ");
scanf("%d%d",&m,&n);
/* Enter m*n array elements */
printf("Enter matrix elements: \n");
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
scanf("%d",&matrix[i][j]);
}
}
/* matrix after the 90 degrees rotation */
printf("Matrix after 90 degrees roration \n");
for(i=0;i<n;i++)
{
for(j=m-1;j>=0;j--)
{
printf("%d ",matrix[j][i]);
}
printf("\n");
}
return 0;
}
Answer:
11.2mm or 0.45in
Explanation:
The percent cold work, attendant tensile strength and ductility if drawing is carried out without interruption is given by the equation you will find in the attached file.
Please go through the attached file for a step by step solution to this question.
The question is not complete. We are supposed to find the average value of v_o.
Answer:
v_o,avg = 0.441V
Explanation:
Let t1 and t2 be the start and stop times of the output waveforms. Thus, from the diagram i attached, using similar triangles, we have;
3/(T/4) = 0.7/t1
So, 12/T = 0.7/t1
So, t1 = 0.7T/12
t1 = 0.0583 T
Also, from symmetry of triangles,
t2 = T/2 - t1
So, t2 = T/2 - 0.0583 T
t2 = 0.4417T
Average of voltage output is;
v_o,avg = (1/T) x Area under small triangle
v_o,avg = (1/T) x (3 - 0.7) x (T/4 - t1)
v_o,avg = (1/T) x (2.3) x (T/4 - 0.0583 T)
v_o,avg = (1/T) x 2.3 x 0.1917T
T will cancel out to give;
v_o,avg = 0.441V
Answer:
Explanation:
Cop of reversible refrigerator = TL / ( TH - TL)
TL = low temperature of freezer = 20 °F
TH = temperature of air around = 75 °F
Heat removal rate QL = 75 Btu/min
W actual, power input = 0.7 hp
conversion on F to kelvin = (T (°F) + 460 ) × 5 / 9
COP ( coefficient of performance) reversible = (20 + 460) × 5/9 / (5/9 ( ( 75 +460) - (20 + 460) ))
COP reversible = 480 / 55 = 8.73
irreversibility expression, I = W actual - W rev
COP r = QL / Wrev
W rev = QL / COP r where 75 Btu/min = 1.76856651 hp where W actual = 0.70 hp
a) W rev = 1.76856651 hp / 8.73 = 0.20258 hp is reversible power
I = W actual - W rev
b) I = 0.7 hp - 0.20258 hp = 0.4974 hp
c) the second-law efficiency of this freezer = W rev / W actual = 0.20258 hp / 0.7 hp = 0.2894 × 100 = 28.94 %
Answer:
The velocities in points A and B are 1.9 and 7.63 m/s respectively. The Pressure at point B is 28 Kpa.
Explanation:
Assuming the fluid to be incompressible we can apply for the continuity equation for fluids:

Where A, V and Q are the areas, velocities and volume rate respectively. For section A and B the areas are:


Using the volume rate:


Assuming no losses, the energy equation for fluids can be written as:

Here P, V, p, z and g represent the pressure, velocities, height and gravity acceleration. Considering the zero height level at point A and solving for Pb:

Knowing the manometric pressure in point A of 70kPa, the height at point B of 1.5 meters, the density of water of 1000 kg/m^3 and the velocities calculated, the pressure at B results:


