Answer:
The volume of the gas will not change because the metal can is limiting it
Explanation:
Insead, Gay-Lussac's law tells us that the pressure will increase with the temprature unil the can eventually explodes, then allowing the volume to rapidly increase.
Answer:
Percent by mass of water is 56%
Explanation:
First of all calculate the mass of hydrated compound as,
Mass of Sodium = Na × 2 = 22.99 × 1 = 45.98 g
Mass of Sulfur = S × 1 = 32.06 × 1 = 32.06 g
Mass of Oxygen = O × 14 = 16 × 14 = 224 g
Mass of Hydrogen = H × 20 = 1.01 × 20 = 20.2 g
Mass of Na₂S0₄.10H₂O = 322.24 g
Secondly, calculate mass of water present in hydrated compound. For this one should look for the coefficient present before H₂O in molecular formula of hydrated compound. In this case the coefficient is 10, so the mass of water is...
Mass of water = 10 × 18.02
Mass of water = 180.2 g
Now, we will apply following formula to find percent of water in hydrated compound,
%H₂O = Mass of H₂O / Mass of Hydrated Compound × 100
Putting values,
%H₂O = 180.2 g / 322.24 g × 100
%H₂O = 55.92 % ≈ 56%
Answer:
120g
Explanation:
Step 1:
We'll begin by writing the balanced equation for the reaction.
Sn + 2HF —> SnF2 + H2
Step 2:
Determination of the number of mole HF needed to react with 3 moles of Sn.
From the balanced equation above,
1 mole of Sn and reacted with 2 moles of HF.
Therefore, 3 moles Sn will react with = 3 x 2 = 6 moles of HF.
Step 3:
Conversion of 6 moles of HF to grams.
Number of mole HF = 6 moles
Molar Mass of HF = 1 + 19 = 20g/mol
Mass of HF =..?
Mass = number of mole x molar Mass
Mass of HF = 6 x 20
Mass of HF = 120g
Therefore, 120g of HF is needed to react with 3 moles of Sn.
Answer:
The atom that loses the electrons becomes a positively charged ion, while the one that gains them becomes a negatively charged ion
Answer:
Carbon has 4 valence electrons (electrons that are used in bonding), and therefore it can make 4 bonds which is the most one can (other than some exceptions, but in general it is the most). It wants to make 4 bonds so it can reach a full octet of 8 elections, hence the rule of 8.
Explanation: