Answer: 
Step-by-step explanation: In some cases you must apply the exponent rule, simplify, or multiply them together to get your answer.
The formula for the nth term of a geometric sequence:

a₁ - the first term, r - the common ratio
![54, a_2, a_3, 128 \\ \\ a_1=54 \\ a_4=128 \\ \\ a_n=a_1 \times r^{n-1} \\ a_4=a_1 \times r^3 \\ 128=54 \times r^3 \\ \frac{128}{54}=r^3 \\ \frac{128 \div 2}{54 \div 2}=r^3 \\ \frac{64}{27}=r^3 \\ \sqrt[3]{\frac{64}{27}}=\sqrt[3]{r^3} \\ \frac{\sqrt[3]{64}}{\sqrt[3]{27}}=r \\ r=\frac{4}{3}](https://tex.z-dn.net/?f=54%2C%20a_2%2C%20a_3%2C%20128%20%5C%5C%20%5C%5C%0Aa_1%3D54%20%5C%5C%0Aa_4%3D128%20%5C%5C%20%5C%5C%0Aa_n%3Da_1%20%5Ctimes%20r%5E%7Bn-1%7D%20%5C%5C%0Aa_4%3Da_1%20%5Ctimes%20r%5E3%20%5C%5C%0A128%3D54%20%5Ctimes%20r%5E3%20%5C%5C%0A%5Cfrac%7B128%7D%7B54%7D%3Dr%5E3%20%5C%5C%20%5Cfrac%7B128%20%5Cdiv%202%7D%7B54%20%5Cdiv%202%7D%3Dr%5E3%20%5C%5C%0A%5Cfrac%7B64%7D%7B27%7D%3Dr%5E3%20%5C%5C%0A%5Csqrt%5B3%5D%7B%5Cfrac%7B64%7D%7B27%7D%7D%3D%5Csqrt%5B3%5D%7Br%5E3%7D%20%5C%5C%0A%5Cfrac%7B%5Csqrt%5B3%5D%7B64%7D%7D%7B%5Csqrt%5B3%5D%7B27%7D%7D%3Dr%20%5C%5C%0Ar%3D%5Cfrac%7B4%7D%7B3%7D)
we are given
geometric sequence -36, 6, -1, 1/6, ...
first term is -36

now, we can find common ratio


now, we can find nth term

now, we can plug values
and we get

now, we can find 5th term , 6th term, 7th term
fifth term:


sixth term:


seventh term:


so, next terms are
, 
,
.............Answer
Red apples to all apples:
There are 6 red apples and 13 apples total, so the ratio it 6:13
Green Apples to All Apples:
There are 7 green apples and 13 apples total, so the ratio is 7:13.
Answer:
Domain and range » Tips for entering queries. Enter your queries using plain English. To avoid ambiguous queries, make sure to use parentheses where necessary. Here are some examples illustrating how to ask for the domain and range. domain of log(x) (x^2+1)/(x^2-1) domain; find the domain of 1/(e^(1/x)-1) function domain: square root of cos(x)
Step-by-step explanation: