Answer:
24.30 m
Explanation:
v(final)=v(initial)+at
0 m/s= 9 m/s +a(3.2s)
a=-2.81 m/s^2
delta x= vt+ (1/2)at^2
=(9 m/s * 3.2 s)+ (.5* -2.81 m/s^2 * 3.2s)
=24.30 m
Answer:

Explanation:
given,
F = 14.1 i + 0 j + 5.1 k
displacement = 6 m
Assuming block is moving in x- direction
we know,
dW = F dx


![W = F[x]_0^6](https://tex.z-dn.net/?f=W%20%3D%20F%5Bx%5D_0%5E6)


hence, work done by the force is equal to 
Answer:
4v/3
Explanation:
Assume elastic collision by the law of momentum conservation:

where v is the original speed of car 1, v1 is the final speed of car 1 and v2 is final speed of car 2. m1 and m2 are masses of car 1 and car 2, respectively
Substitute 

Divide both side by
, then multiply by 6 we have



So the final speed of the second car is 4/3 of the first car original speed
The two different isotopes have weights :
w1 = 78.918 amu
w2 = 80.916 amu
average weight w3 = 79.903 amu
The mixing of two components can be modeled as
let the fraction of w1 be 'x'
hence 
now this is a linear equation in 'x'. Substituting the values we get
x = 0.507
hence the percentage of Br79 = 50.7% and the percentage of BR81 = 49.3%
gravity dwn, your hand up and equal to grav