True is the anwser to your question
Hope this helps
Answer:
Efficiency of a machine is how well the machine works and what the machine is capable of doing.
Mechanical advantage=Load/Effort.
720/180=4
Explanation:
→ Volume of cone = πr² × h/3
Here,
- Radius (r) = 13 cm
- Height (h) = 27 cm
→ Volume of cone = π(13)² × 27/3 cm³
→ Volume of cone = 169π × 9 cm³
→ Volume of cone = 1521π cm³
→ Volume of cone = 1521 × 22/7 cm³
→ Volume of cone = 33462/7 cm³
→ <u>Volume of cone = 4780.28 cm³</u>
The force acting on the cart is 1.43 N.
<h3>What is force?</h3>
Force can be defined as the product of mass and acceleration.
To calculate the force acting on the cart, we use the formula below.
Formula:
- F = m(v-u)/t................. Equation 1
Where:
- F = Force acting on the cart
- m = mass of the cart
- v = Final velocity
- u = initial velocity
- t = time
From the question,
Given:
- m = 500 g = 0.5 kg
- v = 30 m/s
- u = 10 m/s
- t = 7 seconds
Substitute these values into equation 1
- F = 0.5(30-10)/7
- F = 10/7
- F = 1.43 N.
Hence, the force acting on the cart is 1.43 N.
Learn more about force here: brainly.com/question/13370981
Answer: Acceleration will have 2 components, vertical and horizontal.
Net-vertical component can be positive, zero or negative depending upon the magnitude of the upward component of the applied acceleration.
Net-horizontal acceleration will be equal to the horizontal component of the applied acceleration.
Explanation:
Since acceleration is a vector quantity and the cart is being pushed up the ramp, the ramp would be at some angle to the horizontal and hence there will be vertical and horizontal components of acceleration.
<u>For vertical acceleration:</u>
If the magnitude of the upward component of the applied acceleration is greater than the value of the acceleration due to gravity then the net vertical acceleration will be upward because it will overtake the value of acceleration due to gravity.
In case the upward component of the applied acceleration is lesser than the value of the acceleration due to gravity then the net vertical acceleration will be downward.
<u>For horizontal acceleration:</u>
This component remains unaffected and is equal to the horizontal component of the applied acceleration because there is no other acceleration acting in the horizontal direction.
But the net acceleration will not be solely in the vertical or horizontal direction because the block has to move forward on the inclined ramp so there will always exist a horizontal and a vertical component making the net acceleration to parallel to the ramp in upward direction if the body is going up the ramp.